Applying DMAPS technology to the Upgrade of the Belle II Vertex Detector

Maximilian Babeluk

on behalf of the Belle II VTX collaboration

 $1^{\it st}$ DRD3 week on Solid State Detectors R&D

Jun 17th 2024

Maximilian Babeluk

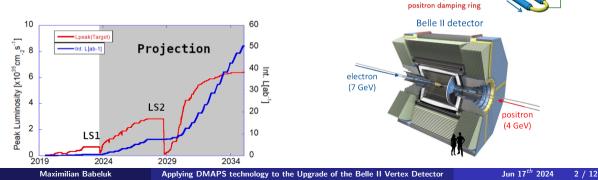
Applying DMAPS technology to the Upgrade of the Belle II Vertex Detector

Jun 17th 2024 1 / 12

The Belle II Experiment

ÖAW

electron / positron


linear injector

Region

electron rin

positron ring

- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric $e^+ e^-$ collisions
- $\sqrt{s} = M_{\Upsilon(4S)} = 10.58 \, \text{GeV}$
- $\bullet\,$ World record peak luminosity in 2022: $4.7\times10^{34}\,cm^{-2}s^{-1}$
- Operation just started after Long Shutdown 1 (LS1)

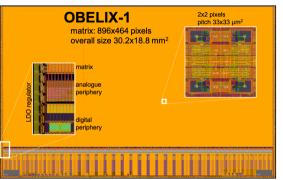
- $\bullet\,$ Planned for LS2 \sim 2028, CDR in publishing process
- 5 straight layers with Depleted Monolithic Active Pixel Sensors
- Identical chips on all layers: Optimized BELIe II pIXel sensor
- Different features enabled on different layers
- L1 & L2 (iVTX):
 - All silicon ladders
 - Air cooling (constrains power)
- L3 to L5 (oVTX):
 - Carbon fiber support frame
 - Cold plate with liquid cooling

	L1	L2	L3	L4	L5	Unit
Radius	14.1	22.1	39.1	89.5	140.0	mm
# Ladders	6	10	17	40	31	
# Sensors	4	4	7	16	2 x 24	per ladder
Expected hitrate*	19.6	7.5	5.1	1.2	0.7	MHz/cm^2
Material budget	0.2	0.2	0.3	0.5	0.8	% X ₀

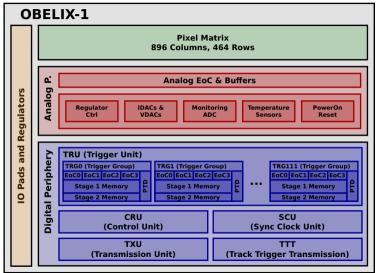
Low Occupancy

*: Large uncertainties due to beam background extrapolation, possible changes in IR (interaction region)

12


Maximilian Babeluk

The OBELIX chip


ÖAW AUSTRIAN ACADEMY O SCIENCES

- Matrix inherited from TJ-Monopix2, size adjusted
- 464 rows and 896 columns
- Timestamp resolution: \sim 50 ns
- $\bullet \ \ \text{Power:} \ < 200 \ \text{mW}/\text{cm}^2$
- TID tolerance: 1 MGy
- $\bullet~$ NIEL tolerance: $5\times 10^{14}\,n_{eq}/cm^2$
- Trigger latency 10 $\mu s,~Trigger~rate~of > 30~kHz$
- $\bullet\,$ Hitrates up to $120\,MHz/cm^2$
- → Hitrate spikes due to injection background
- ⇒ Generous margin for all beam background scenarios
- For TJ-Monopix2 Results, see Talk from Lars Schall

Analog:

- Column drain architecture from TJ-Monopix2
- Monitoring ADC
- Temperature sensors

Power Supply:

• On-chip LDOs

Digital:

- TRU: Pixel readout, trigger processing
- PTD: Part of TRU for precision timing
- TTT: Fast transmission in parallel for contribution to Belle II Trigger

₩ НЕРНҮ

Relle 1

OBELIX Trigger Processing

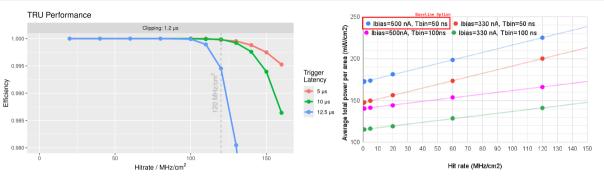
OBELIX Trigger Group (TRG)

- Trigger memory: 112 Tigger Groups, for 8 columns each
- Sophisticated 2 stage memory design
- Stage 1: Pre-trigger buffer SRAM, low power
- Stage 2: Associative memory to match trigger, power hungy
- Buffer sizing driven by power and hitrate, evaluated with extensive simulations

Maximilian Babeluk

НЕРНУ

Applying DMAPS technology to the Upgrade of the Belle II Vertex Detector


AUSTRIAN

SCIENCES

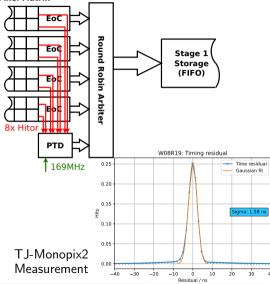
CADEMY OF

Trigger System: Simulations

- Simulation includes: clustering & charge/ToT conversion
- Calibrated with TJ-Monopix2 results
- $\bullet\,$ Power slightly above budget for 120 $\rm MHz/cm^2$
- Clock frequency or analog bias current could be reduced

AUSTRIAN

CADEMYO

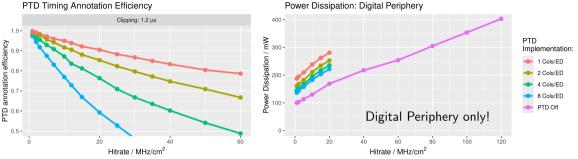

SCIENCES

Peripheral Time to Digital converter

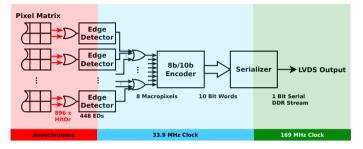
Pixel Matrix

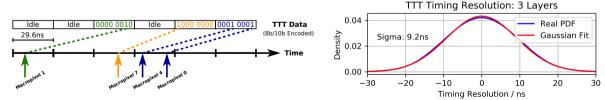
- Hitor: all comparator outputs of one column in an OR-chain (asynchronous)
- PTD: precision timing better than Timestamp (47 ns)
- Sampling: 2.95 ns period (169.7 MHz DDR)
- Power hungry feature: disabled in iVTX
- Little overhead when disbaled (Little die space, clock can be turned off)
- Resolution limited by timewalk and PVT (process, voltage, temperature) variation

• Calibration necessary


40

PTD: Performance and Power


PTD Timing Annotation Efficiency


- Suitable for outer Layers ۲
- Power consumption of digital periphery increases when PTD enabled
- At least one PTD annotation per track necessary
- Very low probability that all three oVTX layer miss the PTD annotation
- All timing info we get makes tracking easier

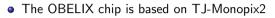
Maximilian Babeluk

- Independent from normal readout
- Whole matrix grouped in 2 to 8 Macropixels
- Time binning: 29.6 ns
- Simple, high throughput transmission

НЕРНҮ

Relle 1

AUSTRIAN


ACADEMY OF

SCIENCES

 $\Box \Delta$

Summary and Outlook

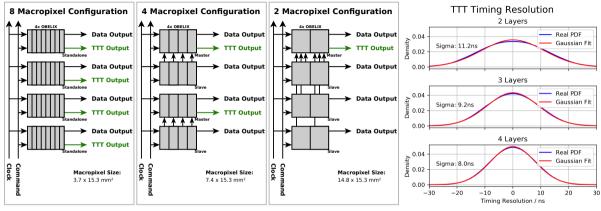
- Additional features in OBELIX (all on-chip):
 - Voltage regulators
 - ADC and temperature sensors
 - Trigger logic
 - Precision timing module
 - Fast transmission for trigger contribution
- Development and verification is entering final stage
- Aiming submission fall 2024

DESY TB Crew Summer 2023

OBELIX Designers Meeting Fall 2023

Backup slides

Maximilian Babeluk


Applying DMAPS technology to the Upgrade of the Belle II Vertex Detector

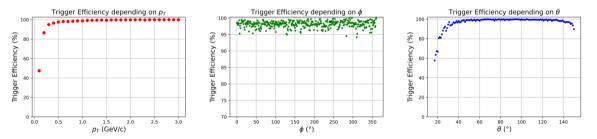
Jun 17th 2024 12 / 12

TTT: Configuration and Performance

- Different Layers in VTX need different resolution: Can save wireing
- Physics simulation pending

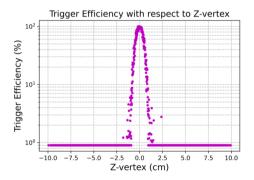
- Timing resolution limited by HitOr delay (45 ns max)
- Averages out with multiple layers
- Baseline: 3 oVTX layers use TTT

Maximilian Babeluk

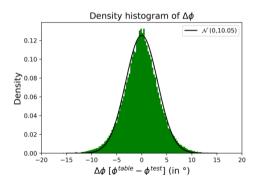


Average efficiency = 98.1 ± 1 %

- Trigger Efficiency with respect to :
 - Transverse Momentum

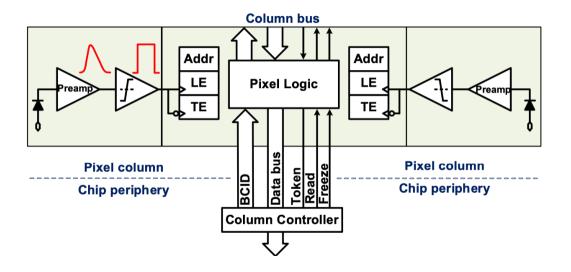

> Angle φ

> Angle θ



ϕ Accuracy : Gaussian σ = 3.17°

AUSTRIAN


ACADEMY OF

OAM

Column Drain Readout

OBELIX Key Requirements

1. High hit efficiency at demanding hitrates with sufficient timesamping

- Matrix inherited from TJ-Monopix2
- See CMOS Talk from Lars Schall

- 2. Handling trigger latency of the Belle II experiment (up to $10 \,\mu s$)
- N
- New implementation of digital periphery
 - Simulation to validate performance

- 3. Power dissipation:
 - air cooling of inner layers
 - liquid cooling of outer layers

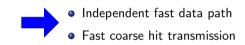
4. Little space for cables inside detector

- Optimized digital logic with optional features
- On chip voltage regulators
 - 2 LVDS downlinks for groups of chips (Rx)
 - 1 or 2 LVDS uplink(s) per chip (Tx)

Maximilian Babeluk

Applying DMAPS technology to the Upgrade of the Belle II Vertex Detector

Jun 17th 2024 5 / 0



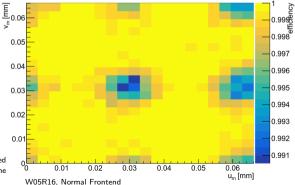
OBELIX Optional Features

5. Incresed timing resolution at expense of power

- Precision timing module in periphery (PTD)
- Offline timing annotation

6. Contribution to Belle II Trigger

These features require significant power: Only switched on for liquid cooled layers L3 to L5

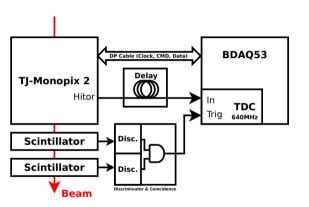

ADEMY O

- First week: Regular measurements with telescope (efficiency and angular scans for depletion)
- Second week: Timing measurements, parasitic to RD50 MPW3 Testbeam
- Beamtelescope with Alpide chips (Duranta)
- Spatial Resolution $< 10\,\mu m$ for all chips

Chip SN	Irradiation	Substrate
W02R05	None	Epi
W05R16	$p^+,~~5 imes 10^{14}~{ m n_{eq}}$	Epi
W08R19	None	Epi
W14R12	None	Cz
Chip SN	Frontend	Efficiency
Chip SN W05R16	Frontend Normal	Efficiency 0.9999
		J
	Normal	0.9999

The measurements leading to these and following results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

Applying DMAPS technology to the Upgrade of the Belle II Vertex Detector


AUSTRIAN

CADEMY OF

SCIENCES

OA\

Timing Measurement Setup

- TDC module of BDAQ53 firmware measures delay between scintillator and Hitor
- TDC words inserted into data stream
- TDC data is matched to hits offline
- Whole chip has one Hitor line: ambiguities arise
- ToT is measured by both, TJ-Monopix2 and TDC module
- Therefore used to match and cut $(\pm 25 \text{ ns cut})$

AUSTRIAN

ADEMY O

Timing results

5

З

2

0

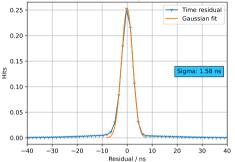
WORDS INS

accuracy (sigma) / ns

Timing a

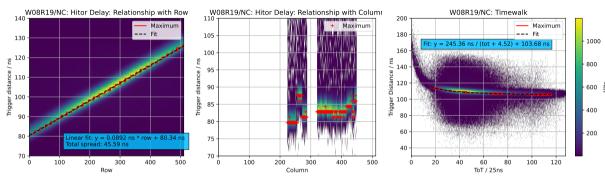
N: Timing accuracy

NORTONS NORTONS WARDS


irradiated

_

Ω

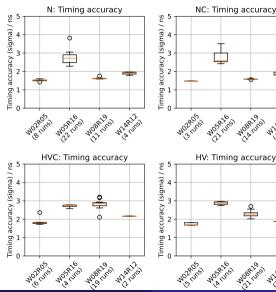

- Three corrections applied:
 - Column delay (Hitor)
 - Row delay (Hitor)
 - Timewalk
- Tail in distribution: wrong associations
- Resolution: < 2 ns (unirradiated), < 3 ns (irradiated W05R16)

Maximilian Babeluk

Timing Corrections

• Iterative fit

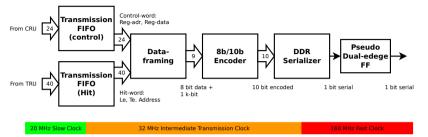
• Halos caused by wrong associations



Timing Accuracy Analysis

WIARIZ

Aruns


- N: Normal Frontend ٠
- ۲ NC: Normal Cascode Frontend
- ٢ HV: High Voltage Frontend
- HVC: High Voltage Cascode Frontend

Maximilian Babeluk

WIARIZ

Transmission Unit (TXU)

- Most TXU components run at 32 MHz (160 MHz/5) intermediate clock
- Serializer needs one byte (10 bit encoded, DDR) per 32 MHz clock cycle
- This allows simple state machines
- Clock boundary to 20 MHz clock is done via FIFO
- Hits are sent in frames sharing the same leading edge BCID

AUSTRIAN

CADEMY OF

SCIENCES