

Machine Learning Processing of BNL AC-LGAD Sensors Readout with Signal Sharing

Gaetano Barone¹, Spencer Ellis¹, Gabriele Giacomini³, Ben Kilminster², **Daniel Li¹**, Anna Macchiolo², Matias Sengar², Alessandro Tricoli³, Nikhilesh Venkatasubramanian¹

Brown University¹, Brookhaven National Laboratory², University of Zurich³

Introduction and Overview

Goal: Accurate and precise prediction of charged particle hit coordinates using machine-learning methods taking AC-LGAD waveforms as inputs

- Unique exploit is charge sharing between electrodes \rightarrow improved spatial resolution
- Limited ROI for study utilizing four electrodes \rightarrow 570 μ m \times 570 μ m

Specifications:

- Manufactured at BNL
- Active thickness: $30 \,\mu m$
- Pad size: $200 \,\mu\text{m}$
- Pitch: 500 μ m

Transient Current Technique Laser Waveforms

Using TCT laser to extract waveforms (without Landau fluctuations)

- TCT waveform dataset collected by Dr. Matias Senger from UZH
- Two available intensities (through attenuation) \rightarrow "high" and "low"
- 385 grid positions with $25 \times 25 \,\mu m^2$ spacing and 111 events per position

Charge sharing exemplified in waveform shape \rightarrow correlated to hit-to-pad proximity

Summary of Previous Studies with Test Beam

Dr. Senger previously studied a DNN trained on "higher-level" waveform information

- Using relative amplitudes
- Best TCT median MSE achieved $\sim 20 \,\mu m$
- Comparison to analytic charge sharing methods

CERN H6 test beam with O(100) MeV pions \rightarrow "AIDAinnova"

- Mimosa telescope
- Chubut 2, 4 channels readout board
- CAEN DT5742 digitizer, 500 MHz @ 5 GS/s
- Cold box (-12 °C) for irradiated DUTs

Method	ТСТ	Test Beam
Analytic Peak Relative Amplitude	~25 µm	$\sim 50 \mu{ m m}$
DNN Peak Relative Amplitude	~20 µm	~44 µm

Proof of Concept with Recurrent Neural Networks

Pre-processing of waveforms to remove noise and keep "interesting" portions around peak

- 100 time steps for each (4) waveform
- Train on both high and low intensity waveforms

Long Short-Term Memory (LSTM) layer # weights scales with series length

• Fewer weights desirable for future application (latency, memory usage)

Model architecture "lightly" tuned to have fewer weights \rightarrow training regulators included

- Converges ~150 epochs with Adam(0.001)
- Batch size $\geq \#$ grid points $\rightarrow 2^9$ (512)

Fixed input series length

Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	[(None, 4, 100)]	0	
lstm (LSTM)	(None, 32)	17024	
dense (Dense)	(None, 32)	1056	
dense_1 (Dense)	(None, 32)	1056	
dense_2 (Dense)	(None, 32)	1056	
dense_3 (Dense)	(None, 2)	66	

Total params: 20258 (79.13 KB

Trainable params: 20258 (79,13 KB)

Non-trainable params: 0 (0.00 Byte)

Metrics for Performance

99%

90%

50%

Quantitative metric to compare various methods

Central regions perform better than the edges

Accurate and precise enough to distinguish two grid points

Waveform Rasterization Studies

Main parameter of optimization is amount of information necessary to keep from waveforms

• Benefits having fewer LSTM weights

Rasterize the waveform input at a few thresholds of 100/50/33/20/10/5%

Comparison to Analytic Methods

Traditional approach of estimating hit position with strip sensors and charge sharing uses *only* the waveform peak value

• 1-dimensional problem with linear regression using relative amplitudes

For 2D grid, higher-order (3rd) regression required in "outer" region

• Define regions by relative amplitudes

Inner region predictions expectedly accurate but outer regions (majority) very inaccurate

Summary and Outlook

Improved hit reconstruction with RNN using "full" waveform at median MSE $\sim 10 \,\mu m$

- Peak amplitude with DNN $\sim 20 \,\mu m$
- Peak amplitude analytic method $\sim 25 \,\mu m$
- Projected improved performance with test beam

Performance maintained at 33% rasterization and spatial interpolation achievable (not shown)

Future and ongoing work:

- Expanding beyond 4 channels
- Test beam and incorporating Landau noise
- HLS conversion and application on FPGA

3:30 PM → 5:40 PM	WG/WP2 - Hybrid ellicon technologies: WP2 Project Proposale				
	3:30 PM	LGAD development at the IMB-CNM	③10m		
		Since the pioneeting proposal of the Low Gain Avalanche Detector (GAAO) concept, IME-CMM has played along the years a fundamental lot of the development of this technology. Lobb have demonstrated and an outstanding performance when detecting high-energy charged particles thanks to their proportional response, their good efficiency and spectral range, and their better semability, and alignal noise rais (both enhanced by the gain. As a consequence, ICAD lis point poolate the timing layers of both the ATLAS and CAS timing layers at the HLAC. This presentation locks at how the LGAD concept can be adapted to oveccrome the future challenges on particle detection. Specification, year will show the HCAMD concept can be adapted to oveccrome the future challenges on particle detection. Specification, year will show the HCAMD concept can be adapted to both the ATLAS and CAS timing layers at the HLACH. This presentation locks at how the LGAD concept can be adapted to oveccrome the future challenges on particle detection. Specification, year will show the HCAMD concept can be adapted to both the ATLAS and CAS timing layers at the HLACH. This presentation locks at how the LGAD concept can be adapted to be exceeding the show the HLAD detection and the future challenges of the multiplication layer profiles, so that detection on the soft is very or deep U/ domains.			
	3:40 PM	From analog readout to ML-processed Silicon Device signal-sharing and LGADs at BNL Speaker: Gaetano Barone (Brown University)	©10m		
	3:50 PM	Development of precision timing alloon detectors for future high energy collider experime Speaker: Koji Nakamura (Higa Energy Accelerator Research Organization ("P))	ente ©10m		
	4:00 PM	AC-LGAD based Timing tracker development for future lepton collider Speaker: Zhijun Liang (Chinese Academy of Sciences (CN))	©10m		
	4:10 PM	LGAD development at Teledyne and Micron Speaker, Richard Bates (Deartment of Physics and Astronomy-University of Clasgow)	© 10m		

Join Gaetano Barone's talk this afternoon for a deeper discussion regarding the "bigger" picture and more technical hardware details

Thank you for your attention-Questions?

Backup Slides

06/18/2024

Characterization of RNN Prediction

Interpolation Studies

The network is trained to interpolate within a 25 μ m step size \rightarrow can target finer levels of precision with closer grid spacing

hls4ml Keras Conversion

