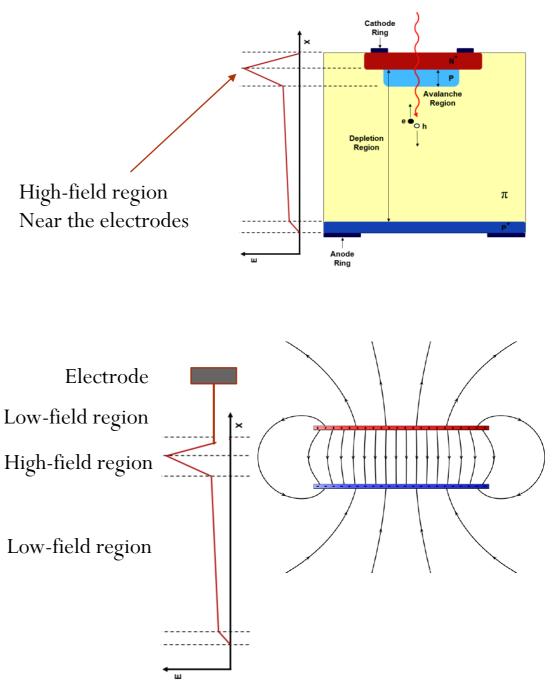
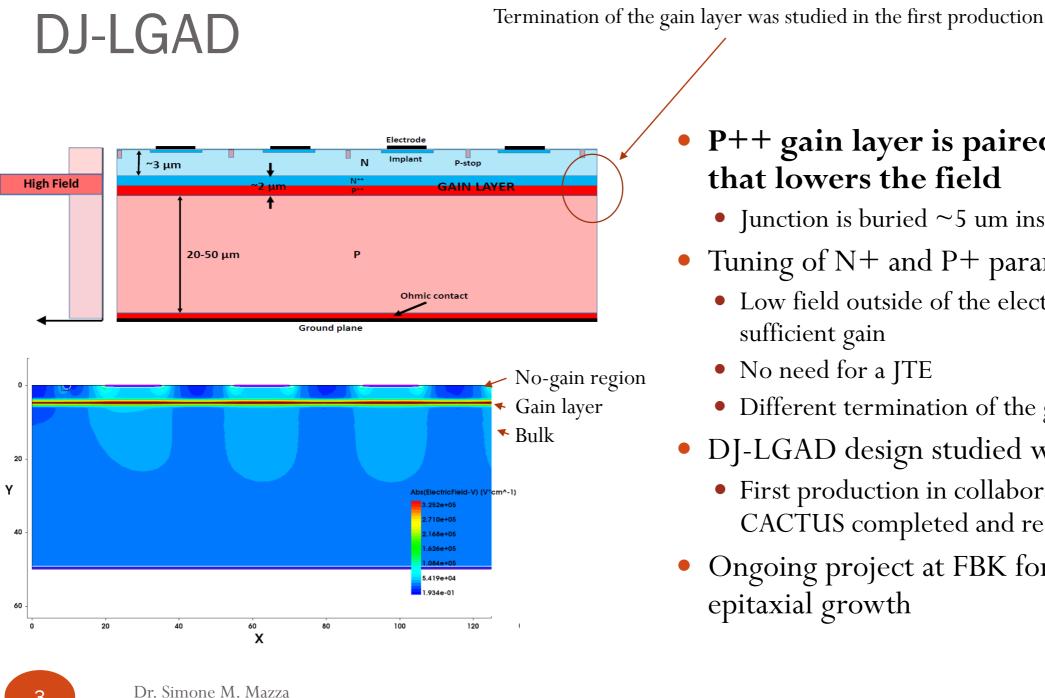

Update on proposal RD50-2023-03: Deep Junction LGAD

1° DRD3 Workshop (2024, CERN) Dr. Simone M. Mazza (SCIPP, UC Santa Cruz) On behalf of the 13 institutes involved










## A new approach: deep junction

- Granularity limit is caused by high field near the electrodes
  - What if the field is kept low while maintaining gain?
- Basic inspiration is that of the capacitive field:
  - Large between plates, but surrounded by low-field region beyond the plates
- Use symmetric P-N junction to act as an effective capacitor
- Localized high field in junction region creates impact ionization
- Bury the P-N junction so that fields are low at the surface, allowing conventional granularity
- $\rightarrow$  "Deep Junction" LGAD (DJ-LGAD)
- Concept presented first at <u>TREDI 2020</u>
- Prototype results presented at previous <u>RD50 workshop</u>
- Project approved after <u>RD50 workshop</u> last year





P++ gain layer is paired with a N++ layer that lowers the field

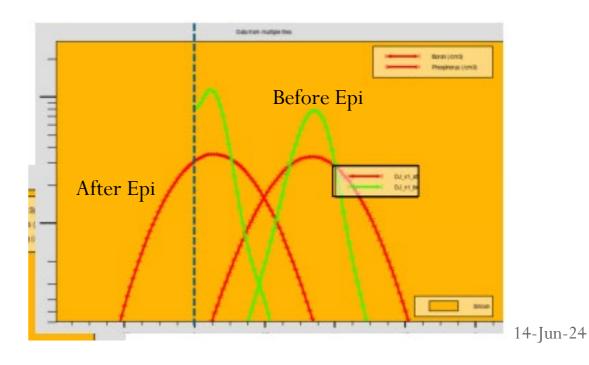
- Junction is buried  $\sim$ 5 um inside the detector
- Tuning of N+ and P+ parameters important
  - Low field outside of the electrodes while maintaining sufficient gain
  - No need for a JTE
  - Different termination of the gain layer designed
- DJ-LGAD design studied with TCAD Sentaurus
  - First production in collaboration with BNL and CACTUS completed and results presented
- Ongoing project at FBK for production using epitaxial growth

## Fabrication of DJ-LGAD in RD50

- Fabrication within RD50 of DJ-LGAD at FBK (providing in-kind contribution)
  - Project cost ~100k
  - 12 participating institutions

| Project cost                                                     |                      |
|------------------------------------------------------------------|----------------------|
| Starting wafers (40 epitaxial wafers)                            | 3.800 €              |
| Fabrication of both short loops (deep junction and trench)       | 8.000 €              |
| Epi growth for short loop (external service)                     | 9.600 €*             |
| High energy implantation for short loop (external service)       | 3.000 €              |
| Photolithographic masks (for trench short loop and sensor batch) | 7.200 €              |
| Wafer processing for sensor batch                                | 43.000 €             |
| Epi growth for sensor batch (external service)                   | 9.600 €*             |
| High energy implantation for sensor batch (external service)     | 3.000 € <sup>†</sup> |
| SIMS                                                             | 4.800 €              |
| On-wafer electrical measurements                                 | 7.200 €              |
| Dicing                                                           | 2.400 €              |
| Total Cost                                                       | 101.600 €            |

| Contact Person | Dr. Simone Michele Mazza,                                                 |  |  |
|----------------|---------------------------------------------------------------------------|--|--|
|                | Santa Cruz Institute for Particle Physics                                 |  |  |
|                | University of California, Santa Cruz                                      |  |  |
|                | 1156 High St., Santa Cruz, CA, 95064, U.S.                                |  |  |
|                | simazza@ucsc.edu                                                          |  |  |
| Institutes     | 1. University of California Santa Cruz (S.M. Mazza, B. Schumm)            |  |  |
|                | <ol><li>FBK (M. Boscardin, M. Centis Vignali, G. Paternoster)</li></ol>   |  |  |
|                | 3. CERN (M. Moll, V. Kraus, M. Wiehe, M. Fernandez Garcia, N. Sorgenfrei) |  |  |
|                | 4. UNM (S. Seidel, J. Si, R. Novotny, J. Sorenson, H. Farook, A. Gentry)  |  |  |
|                | 5. KIT (M. Caselle, A. Dierlamm)                                          |  |  |
|                | <ol> <li>PSI (J. Zhang, A. Bergamaschi, M. Carulla)</li> </ol>            |  |  |
|                | <ol><li>HEPHY (T. Bergauer, A. Hirtl, M/ Dragicevic)</li></ol>            |  |  |
|                | 8. UCG (G. Lastovicka-Medin, V. Backovic, I. Bozovic, J. Doknic)          |  |  |
|                | 9. Nikhef (M. van Beuzekom, F. Filthaut, M. Wu, H. Snoek)                 |  |  |
|                | 10. UZH (B. Kilminster, A. Macchiolo, M. Senger)                          |  |  |
|                | 11. IHEP Beiking (Z. Liang, M. Zhao, Y. Fan)                              |  |  |
|                | 12. Manchester (O.A. De Aguiar Francisco, E. Ejopu, M. Gersabeck, A. Oh)  |  |  |
| Total project  | 101.600 €                                                                 |  |  |
| RD50 request   | 50.000 €                                                                  |  |  |


4

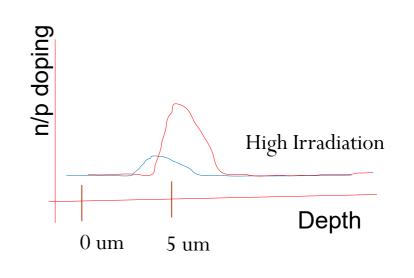
## Project status

- The project started somewhat slowly due to patenting issues and setting up the CERN order to start gathering funds
  - Institutes are now being invoiced
- We're now in the process of doing the first short loops to study the effect of gain layer implantation and Epitaxial growth
- Due to Epi temperature issues with outgassing and diffusion to understand
- Sending out test implanted wafer soon for Epitaxial growth
  - Next: SIMS to understand the doping profile change
- Support from UCSC and KIT on TCAD simulation to understand the sensor behavior after diffusion

|   | Activity                          | Institutes                       | Duration              |
|---|-----------------------------------|----------------------------------|-----------------------|
|   | Short loop for deep junction      | FBK                              | 6 months <sup>†</sup> |
| " | Short loop for trench filling     | FBK                              | 3 months              |
|   | Simulation and detector design    | FBK, UCSC (partially parallel to | 3 months              |
|   |                                   | short loops)                     |                       |
|   | Batch production                  | FBK                              | 9 months <sup>†</sup> |
|   | On-wafer testing                  | FBK                              | 2 months              |
| Ī | Electrical characterization       | UCSC, HEPHY, CERN, UNM, KIT,     | 2 months              |
|   |                                   | Nikhef, UZH, IHEP, Manchester    |                       |
| ĺ | Functional characterization       | UCSC, HEPHY, CERN, UNM, KIT,     | 4 months              |
|   |                                   | PSI, UCG, Nikhef, UZH, IHEP,     |                       |
|   |                                   | Manchester                       |                       |
| Ì | Sensor irradiation                | UNM                              | TBD                   |
|   | Post-irradiation characterization | UCSC, CERN, UNM, UCG, Nikhef,    | 4 months              |
| l |                                   | UZH, IHEP, Manchester            |                       |

Table 1: Time allocation for project activities. <sup>†</sup> Note that these times are susceptible to the lead time for external services.




## Conclusions

- DJ-LGAD: a device with deep gain layer
  - Avoid high field near the electrodes while maintaining gain
  - Fine pixelation of the top surface
  - First working DJ-LGAD prototype demonstrated but with some issues
- Adaptive gain layer can increase greatly the radiation hardness capabilities of LGADs
  - Adaptive gain layer can be combined with compensated gain layer and Carbon co-implantation
- Current RD50 production with FBK using Epitaxial growth
  - Started first short loop to study the effect of Epi growth to the implanted gain layer
- This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286 and SBIR DE-FOA-0002145







