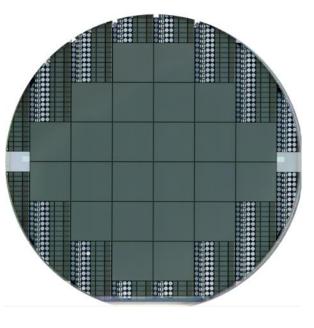


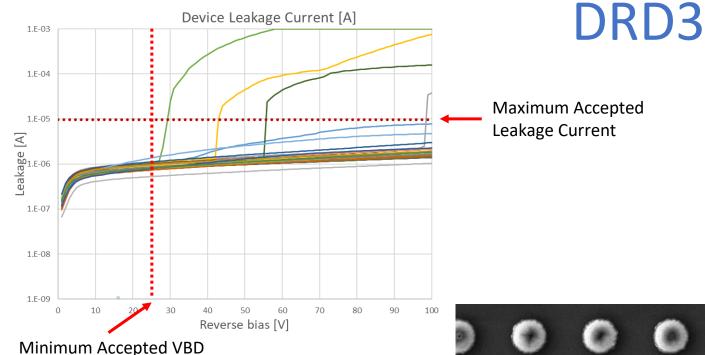
Development of very small pitch, ultra rad-hard 3D sensors for tracking + timing applications @ FBK

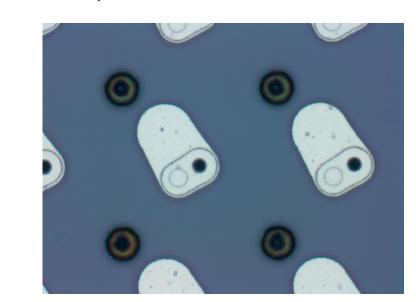
Maurizio Boscardin Fondazione Bruno Kessler Trento, Italy

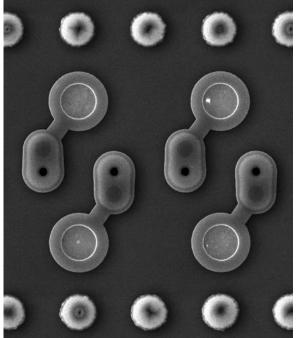
- FBK has been involved in the development of 3D sensors since 2004
- Long history of collaboration with INFN
- Key milestone was the production of half of the ATLAS IBL 3D pixels (double-sided technology)
- Since 2014, having passed to 6" diameter wafers, moved to single-sided technology, pioneering the use of Si-Si DWB substrates and stepper lithography for better alignment and detail definition
- Successfully developed small-pitch 3D pixels for HL-LHC upgrades of ATLAS and CMS, currently in production phase
- Also developed 3D pixels with trenched electrodes for optimal timing resolution

On-going productions for ATLAS and CMS

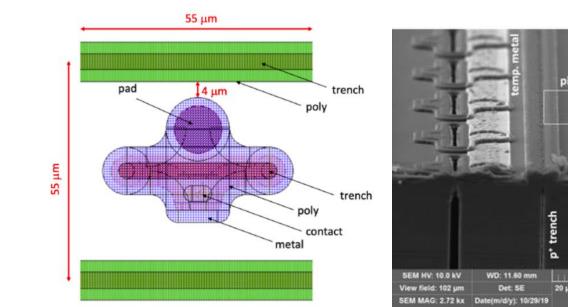

ATLAS Production

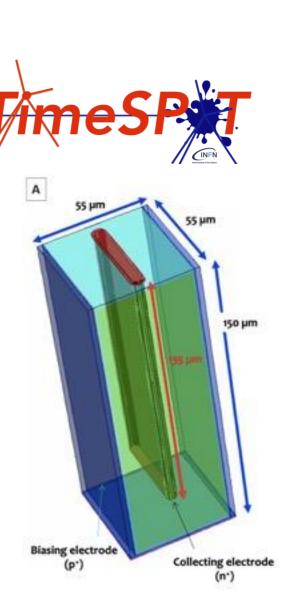

SENSORS


- 50x50: about 800 +350 sensors
- 25x100: about 500 sensors


CMS Production 25x100

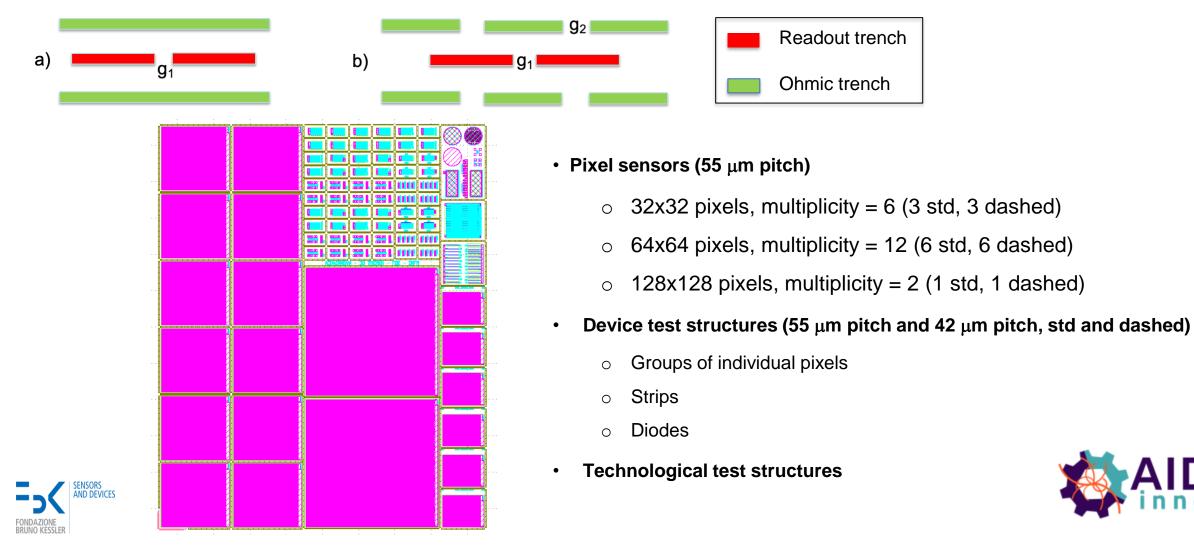
- 100 sensors pre-prod just completed
- Production: about 400 sensors





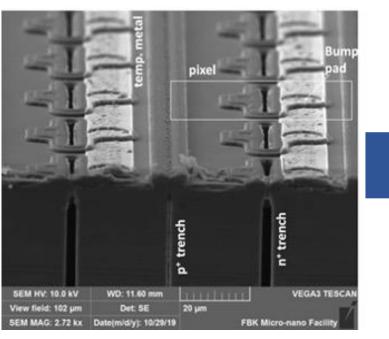
3D-Trench pixels

- Outstanding timing resolution demonstrated on single pixel test structures with discrete electronics readout:
- ~ 10 ps both before irradiation (JINST 15 P09029 2020) and after irradiation up to $2.5 \times 10^{16} n_{eq}/cm^2$ (Front. Phys. 12:1393019 2024)
- Recent beam test on samples irradiated up to $1.0 \times 10^{17} n_{eq}/cm^2$, analysis under way



DRD3

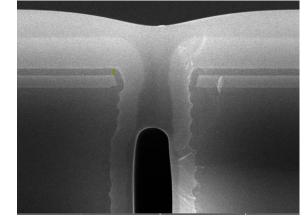
New batch AIDA Innova



Continuous ohmic trench (a - STD) vs dashed ohmic trench (b - DSH)

Trenches Si-3D

TIMESPOT




... to 3D AIDA

- ✓ DRIE on trenches process improvement: width & length of trenches optimization
- Optimization of Lithography processes (photoresist coating, exposition and developing)
- Adaptation of the design to the process (enlargement of the npoly area and removal of the contacts from the trench)
- ✓ Accurate Trenches drying before all depositions
- Study of Trenches filling
- Temporary metal removal improvement
- Renewal of Equipment (lithography, and Dielectrics Etching)
- Experience: recognition of defects, critical points and causes and study of ways to avoid or reduce them
- From 11 shot per wafers to full wafers (29 shot) low bow (about 16 micron)

Process completed last friday

From the DRD3 Research Proposal

DRD3

4.1 Spatial and temporal resolutions at extreme radiation levels

For this R&D, the new innermost layers of ATLAS/CMS and the LHCb velo pixel systems are used as stepping stones for the formidable developments needed for FCC-hh. Due to their short drift path and low depletion voltage, 3D sensors are strong candidates for these upgrades.

- RG 2.1 Reduction of pixel cell size for 3D sensors.
 - 2024-2025: 3D sensors test structures with pixel size smaller than the current 50 \times 50 μm^2 or 25 \times 100 μm^2
 - 2026-2028: Large size 3D sensors with reduced pixel size.
 - \geq 2028: Expand the number of foundries capable of producing 3D sensors for HEP applications.
- RG 2.2: 3D sensors with a temporal resolution better than 50 ps.
 - 2024-2025: Production of a small matrix with pitch equal to or less than $55\times 55~\mu m^2$ to be connected with existing read-out ASICS
 - 2026-2028: Production of large-size sensors (using the selected geometry from the R&D runs) and interconnection with custom-made read-out ASIC

Workplan

DRD3

2024-2026

- Extensive characterization of AIDA Innova batch (well matches scope of RG 2.2)
- Includes both test structures and small-medium (up to 128x128) pixel arrays

New batch of small-pitch 3D column sensors, funded by INFN (well matches scope of RG

2.1 and RG 2.2), fabrication to start in 09/24

- Design optimized for timing, several layout options
- Cell size down to $45x45 \ \mu m^2$ for pixels and below for test structures (also very small cell samples $25x25 \ \mu m^2$, for charge multiplication studies)

2026-2028

• Implement the best layout solutions to large size arrays (funding not yet available)

Interested groups

- FBK (Maurizio Boscardin) : device fabrication
- TIFPA INFN (Gian-Franco Dalla Betta): design, simulation and characterization
- INFN Cagliari (Adriano Lai): simulation and characterization (+ readout design)
- INFN Firenze (Giacomo Sguazzoni): characterization
- INFN Genova (Claudia Gemme): characterization
- NIKHEF (Martin van Beuzekom): characterization
- Univ. New Mexico (Sally Seidel): characterization

