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EuCAIF Conference (30 April - 3 May 2004)

e First European Al for Fundamental Physics Conference (EuCAIFCon)
e EUuCAIF: new European initiative for advancing the use of Artificial
Intelligence (Al) in Fundamental Physics.
e Joint initiative from particle physics, astroparticle physics, gravitational
wave physics, cosmology, nuclear physics and theoretical physics.

JENAA

Joint ECFA-NUPECC-APPEC Activities

e (Goal is to establish connections between different branches of EuUCAIF
e Cross-disciplinary sessions centred on specific Al themes
e Events supported also by

@ and ,g\«j NexiGen



Conference Organisation

e QOrganised with plenary sessions, panel discussions, parallel sessions with
oral talk and lighting talks
e Lightening talks presenting also a poster (2 poster sessions)
e Well organised with long breaks allowing time for discussions.
e Large number of participants (more than 200)
e from students and early career researchers to seniors
e Great location, Amsterdam, in a nice Hotel with lunches provided for the 4
days (from Tuesday to Friday)
e Reasonable conference fees
e See timetable and contributions at conference Indico page.



https://indico.nikhef.nl/event/4875/timetable/#20240503.detailed

Plenary presentations

e Reviews of Al in the different disciplines
Theoretical physics
Experimental particle physics
Nuclear Physics
Gravitational Wave physics
Cosmology
e Astro-particle Physics
e Special keynote talks
e Methods in Al for Science (Frangois Charton)
e Al ethics and fundamental physics (Savannah Thais)
e Prospects for Al in physics and astronomy (Max Welling)
e Closing Keynote Talk:
e Al for fundamental physics (Kyle Cranmer)



Parallel Sessions

e Large number of contributions (~ 200)
e Parallel sessions on these topics and number of contributions:

Pattern recognition and image analysis (37)

Generative models and simulation of physical systems (23)
Simulation-based inference (28 )

Hardware acceleration and FPGA (19)

Explainable Al (10)

Foundation models and related techniques (12)
Physics-informed Al and integration of physics and ML (13)
Uncertainty quantification and others (24)

e Working group discussions



EuCAIF Working groups

Foundation Model and Discovery
Hardware and Design Optimisation
Fairness and Sustainability

JENA WP 4 (ML Computing Infrastructure)
Community connections and funding

Started initial discussion in the working groups
e Define goals and objectives
e Inviting interested members to participate
e Follow-up meetings will better define the future plans



WG1 - Foundation models

e Goals:

e Facilitate research on large-scale foundation models (FMs) for

fundamental physics

e Provide infrastructure, resources, data and models, connect researchers,

define problems & metrics

The Vision

sign up: https://bit.ly/eucaifcon24-wg1

SSL, tokenization, transformers (&
beyond?), (flexible) inductive bias?...

0-shot, few shot, RAG,...

a
25
Pre-training Fine-tuning

Calorimeter — Foundation
Hits Model

Large Unlabelled
Dataset

Charged
Particle Tracks

Calorimeter
Clusters

Muon Tracks

Small Labelled
Dataset

Multiple modalities

More to do:

More features

» Scale up 100M

—10B...

* Multi-modal & -scale
* Common latent

space (align?)

» Language modality?
* Adopt industry

models to physics

* FM — agents of

experts

* Interpretability
» Explore & exploit (—

experiment)


https://bit.ly/eucaifcon24-wg1

WG 4: White paper for JENA WP4

e Define Machine Learning and Artificial Intelligence Infrastructure
e define computing requirements for the next decade (JENA computing initiative)
e Mandate of the group:
e Follow the technologies in this fast evolving field.
e Analyse the potential impact on the ENA computing infrastructure
needs.
e Quantify the resource needs and define the interfaces and services that are needed
by physicists to run ML workloads
(looking at both training and inference).
Timescale: White paper ready by end of the year
Join the working group:
— https://indico.scc.kit.edu/event/3813/



https://indico.scc.kit.edu/event/3813/

Panel Discussions

e Directions Al and fundamental physics
e Al Infrastructure
e Building a European Coalition for Al in Fundamental Physics



Plenary Presentations

e personal summary of some interesting plenaries (not complete)



Theoretical high-energy physics and Al (Matthew Schwartz)

Very interesting and fascinating talk (see slides)
e Past: collider physics
e Present: symbolic Al for theoretical physics
e lLarge Language Models show good capability for
symbolic problems
e Example: simplify computation of Feynman
diagrams (polylogarithms)
e approach based on reinforcement learning or
transformers
e Same approach can be used to other problems:
e Simplifying spinor-helicity amplitudes
e scattering amplitudes
e ML application also in string theory

e Future: can machines do theoretical physics?
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https://indico.nikhef.nl/event/4875/contributions/21152/attachments/8268/11791/EuCAIFcon2024-Schwartz.pdf
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* Biological intelligence grows by a factor of 2 in one million years
* Machine intelligence grows by a factor of 10 in 1 year

MDS, Nature reviews physics (2022)
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* Both Al and biological intelligence grow exponentially
* Factor of 10¢ difference in exponent
* Intersection, when machines and biology have comparable "intellegence” is now

algorithmic doubling time = 6 to 14 months!
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GPT42

Some interesting questions GPT4

GPT43
GPT44
GPT45
GPT46
GPT47
GPT48
Control 1

Physics requires creativity. Is Al creative? P —
e GPT4 more creative than 99% of humans ’
Augmented intelligence: can Al be a skill-leveler for high-
energy physics theory?
e with Al average physicist can become as Einstein
Theoretical physics may have stalled in recent years
e problems are maybe too difficult for humans
e humans can handle only 5-9 concepts at once and [ttt by
like to visualize Torrence Test score
e computers can handle much more complexity
e Example: could a cat ever learn to play chess?
Language models are vey close to training themselves to be
better physicists
Suppose a machine understands the theory, do we need to
understand it too?
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Conclusions

* Machine learning is rapidly tranforming high energy physics
* Current revolution in applications and advances are in “data science”
* In hep-th and hep-ph problems are largely symbolic

1. How do we transition from data science to symbolic theoretical physics?

* It will get easier once we get started
* Symbolic search problems (polylogarithms, spinor helicity) searching for
* Properties of the S-matrix (unitarity) simplicity
e String Theory Vacuua

2. Generative Al is the future

* Short term: augmented intelligence
* Machines help us organize information
* Smooth transition to arXAlv: more and more Al input into arXiv papers

* Long term: artificial intelligence
* Machines will suggest problems, solve problems: G Ph. T
* Machines will dumb things down, so we can appreciate their work
* Superhard problem in theoretical physics may finally be solved

14



Experimental particle physics and Al (Gregor Kasieczka)

e Role of Alis in experimental particle physics
e \ery detailed and complete review (see slides).

. Taggers
Reconstruction
Simulation
Unfolding

Anomaly Detection
Triggers

Inference (SBI)
= . Experimental Design

4. Unfolding
5. Anomaly Detection

©®NODORAE LN =

mmmmmmmmmmmmmmmmmm


https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf

1. Taggers

Take aways
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3. Simulation

Strategy 1. Use classical
simulation or collider
data as input

2. Train generative

surrogate

3. Oversample

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Main Targets

* Event level kinematics
» Jet constituents

« Calorimeter showers
 pile-up interactions

i
@//&‘
57 y [cells]

H

VS

Point Cloud

Example: CaloClouds

using diffusion
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3. Simulation

e Application: used in ATLAS (FastCaloGAN in
ATLFAST3)

e Future outlook:

Importance of public datasets to
compare algorithms
(e.g CaloChallenge 2023)

e Some challenges:

Quality of generation
Complexity of samples
Integration in Geant4
Adaptability
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4. Unfolding

e 2 approaches:
e Reweighting based on classifiers
e Morphing based on diffusion or generative models
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5. Anomaly Detection

Model independent search of new physics
e CATHODE and CASE (CMS Anomaly Search Effort)

CATHODE
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6. Trigger

his 4 ml

https://fastmachinelearning.org/

Trigger

Colliders with
40 million events/second

2 stage system (Trigger) reduces
this to ~1 kHz for offline storage and
analysis

Stage 1: Hardware based, using field-
programmable gate arrays (FGPAs)
with microsecond latency

Improving selection criteria
in trigger with Al yields
better offline data

hls4ml to translate ML architectures to
hardware language

Example: Triggering Outliers

Learn-compression/decompression
on signal free sample and use as
anomaly score

Now testing in CMS Level 1 trigger

https://indico.cern.ch/event/1283970/
contributions/5554350/attachments/
2720710/4727877/axol1tl_fastml.pdf

Testing in CMS L1 Trigger

Example: Online graph building

g ®
o ®

Online graph building for
reconstruction in Belle 2
drift chamber

Explore different methods
of constructing graphs for
GNN processing

Within resource
constraints

Neu et al 2307.07289

For Belle 2
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Accelerator Physics and Al (Verena Kain)

Using Al for accelerator complex at CERN
CERN accelerator complex very diverse, many different types of beams and production
schemes
e current beam scheduling has severe impact on efficiency in running accelerators
e hysteresis limiting also accelerator efficiency
Future accelerators (like FCC) need to be run as an autonomous system
Some Current example of Al usage in accelerators:
e Bayesian Optimisation for control and optimisation of accelerator
e ada[tive continuos control for extracted spill in NA
e Reinforcement Learning (RL)
e problem online training often not possible (need accurate simulation, e.g.
digital twin)

22



Example: RL at CERN

PS PS to SPS

» Correct RF phase & voltage for uniform
bunch splitting (LHC beams)

» Successful sim2real & fully operational

» Adjust fine delays of SPS
injection kicker

> RL agent (PPO) trained on

» Multi-agent (SAC) & CNN for initial guess data-driven dynamics model
» Next: continuous controller (UCAP) > Ready for sim2real test
S = w=== = A lLasheen, J. Wulff M. Remta, F. Velotti

LINAC3 / LEIR
> PhD project (B. Ro¢.il:iguez): . PR Scomtsted I Steer DC beams in TT20 TL using split-
;::j:::rt?:,:"l':fl:i(‘::?e‘:;‘c?::oft;;pt'mal N foil secondary emission monitors
HE Works well in simulations, with noise
> zt:;itt:yb:::gt;n VAE-encoded  ° ):: and varying emittances

> Ready for sim2real test

120

> Agent trained on data-driven
dynamics model

Frequency bin

V. Kain, N. Madysa

.2[‘ ““W""*W

N. Bruchon, V. Kain
Courtesy M. Schenk

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024



2021 2022 2024
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—-T n 4: HL-LHC

Time bounded
ready for HL-LH

Era'ect (5 years): improvements

029)

Future Cifc_uiar Collide

The Future Circular CollidéF study (FCC) is developing designs for

AI for particle accelerators,

EuCAIF, V. Kain,

EPA is preparing a new CERN accelerator
exploitation paradigm

— blazing the trail for FCC

01-May-2024

@ oscimisation on ucar

e
Magnetic measurements CERN complex )

Fully automated HWC-IsT 4
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Nuclear Physics and Al (Amber Boehnlein)

e Al application in NP, current ones:
e Detector Operations
e monitoring, experiment control
e Reconstruction
e standard signal/background discrimination
e Future ambitions:
e Detector Design for the Electron-lon Collider
e Theory/experiment integration )
e 3D imaging of internal structure of the proton . 2 =

i Update imag:e generator,
e use generative Al for computational nuclear | _ g
simulation and inverse design problems in ¢¢W¢

nuclear theory A

3 dimensional spatial
density distribution
of quarks inside
protons from model
calculations

usaco

Generative Al paradigm HERMES, COMPASS,

Jlab 12, EIC
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Gravitational wave physics and Al (Elena Cuoco)

e Gravitational wave analysis based on detecting a
very small signal in a noise-dominated time series

e Use a template description of the signal and then
perform Bayesian parameter estimation

e Several places for using Al

NOISE BURST CBC

* Data cleaning * ML-based method for * Detection * Clustering in the parameter
* Glitch classification detection + Early warning space

* Nonlinear noise * CCSN waveform classification * Anomaly detection * Computing efficiency

* ITF anomaly detection

* Glitch simulation

SWBG PARAMETER ALERT SYSTEM
* Noise correlation ESTIMATION * Ad hoc hardware/software
* Faster and efficient methods solution?



Some examples of Al in GW:

e Classifying different signals from core collapsed
supernovae (CCSN) using CNN and LSTM (time
series is like an image in time-frequency domain)

e Gravitational Wave modelling: waveform building

using Al (e.g Gaussian process) e L S

* CBC (Compact binary coalescence) detection ™I TR
using ML i —

e Anomaly detection (using auto-encoder based R
algorithms) _____

e Parameter estimation using autoregressive e
normalising flows :

False alarm probability
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Astroparticle Physics and Al (Siddarth Mishra-Sharma)

e Alarge amount of data is coming:
e e.g. Vera Rubin observatory, Euclid, Next Generation CMB, etc..
e The ability to make robust conclusions is often limited by the challenges in connection theorv
to data

. . .
e Main Al usage: >@<
® ®
) v;)’," =02

e Simulation-based inference
e for inverting complex physical simulators
e several applications existing
e Generative models
e for capturing the distribution of complex data
e used to construct likelihood
e Differentiable and probabilistic programming
e for specifying models and enabling flexible inference
e enable end-to-end gradient based optimisation

oy o 0.89
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Conclusions

Prediction
® ®
. .
Inference

e Invert complex physical simulators
e Directly work with high-dim data

e Encode complex physical distribution
e Uses end-to-end or as physical priors
e Compute data-sim compatibility

Simulation-based
inference
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Differentiable /

oge . wa \mi'mn)
probabilistic e et !
Forware
programming
Sampled lensed 9
Source-plane Source variational images ji
coordinates MLP distribution Somie
Gsource = N (p1,07) = — >
. o Flexible specification of model components
e Enable high-dimensional optimization using
Fo Lens variational distribution Sample

Neural field representation

Qiens = N (tens, Stens)

gradient-based inference techniques

Observed lensed

Variational inference image x

Siddharth Mishra-Sharma (MIT/IAIFI) | EuCAIFCon 2024 38/38



Final Keynote: Al for fundamental physics (Kyle Cranmer)

e AI/ML as emulators of complex simulations
e Scientific understanding

How does Al enable or enhance scientific understanding?

computational microscope (providing information) ;""l'ai{n'o's'éﬁr},}v' of Science ;‘""él.}\};;'éfy Scientists
resource of inspiration expanding human scope _ _
agent of understanding replacing human in [ ¥ [
generalising observations

e human less essential here

Computational
Microscope

Resource of
Inspiration

Agent of
Understanding

&

Use of ML in Physics vs Molecules & Materials
e Many use of Al aimed at material and drug discovery
e In physics ML is a component in data analysis
pipeline
e mistakes matter, need uncertainty quantification




Simulation-Based Inference

Deep learning and neural density estimation are effective at learning approximate
surrogates for the likelihood and posterior, revolutionizing principled statistical
inference in science!

e Removes the need for hand-engineered summary statistics that sacrifice power

nature / 0
parameter
l
latent 2
ML pipeline
component

A

argmin L[g| — 7(x|0) —>
9

Data / Simulation Machine Learning Inference



Parallel Presentations

e Several diverse contributions especially from students and early career researchers.
e Alot on Al applications on fast simulation, simulation base inference, and pattern
recognition
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Parallel (Poster) contributions: b-hive (Niclas Eich)

e Db-hive: a modular ML training framework for state-of-the-art object- tagging
within the Python ecosystem at the CMS experiment
e Full end-end pipeline: from ROOT file to training ML models
e Deploying state of the art models (Particle Net, Transformers)
e Pythonic framework
e use coffee, awkward and numpy
e support Tensorflow and PyTorch

law 2
luigl analysis workflow

L2 python
oL T O ERN-CMS-DP-2024-2
N=’ TensorFlow  PyTorch see more at C -CMS-DP-2024-20

matplxtlib
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https://cds.cern.ch/record/2896100/files/DP2024_020.pdf

Conclusions

e Great conference with every expert of ML/Al in HEP and fundamental
physics.
e Alarge number of interesting contributions
e Good occasion to talk to many people in Al/ML community
e Thank you for the organisers
(Sacha Caron and Cristoph Weniger)
e The next conference will be organised next year (in Cagliari, Italy)

34



