Summary of First EuCAIF Conference 2024

Lorenzo Moneta (SFT Meeting May 27, 2024)

EuCAIF Conference (30 April - 3 May 2004)

- First European Al for Fundamental Physics Conference (EuCAIFCon)
 - EuCAIF: new European initiative for advancing the use of Artificial Intelligence (AI) in Fundamental Physics.
 - **Joint initiative** from particle physics, astroparticle physics, gravitational wave physics, cosmology, nuclear physics and theoretical physics.

- Goal is to establish connections between different branches of EuCAIF
- Cross-disciplinary sessions centred on specific AI themes
- Events supported also by

Conference Organisation

- Organised with plenary sessions, panel discussions, parallel sessions with oral talk and lighting talks
 - Lightening talks presenting also a poster (2 poster sessions)
- Well organised with long breaks allowing time for discussions.
 - Large number of participants (more than 200)
 - from students and early career researchers to seniors
- Great location, Amsterdam, in a nice Hotel with lunches provided for the 4 days (from Tuesday to Friday)
 - Reasonable conference fees
- See timetable and contributions at conference <u>Indico page</u>.

Plenary presentations

- Reviews of AI in the different disciplines
 - Theoretical physics
 - Experimental particle physics
 - Nuclear Physics
 - Gravitational Wave physics
 - Cosmology
 - Astro-particle Physics
- Special keynote talks
 - Methods in AI for Science (François Charton)
 - All ethics and fundamental physics (Savannah Thais)
 - Prospects for AI in physics and astronomy (Max Welling)
- Closing Keynote Talk:
 - Al for fundamental physics (Kyle Cranmer)

Parallel Sessions

- Large number of contributions (~ 200)
- Parallel sessions on these topics and number of contributions:
 - Pattern recognition and image analysis (37)
 - Generative models and simulation of physical systems (23)
 - Simulation-based inference (28)
 - Hardware acceleration and FPGA (19)
 - Explainable AI (10)
 - Foundation models and related techniques (12)
 - Physics-informed AI and integration of physics and ML (13)
 - Uncertainty quantification and others (24)
- Working group discussions

EuCAIF Working groups

- Foundation Model and Discovery
- Hardware and Design Optimisation
- Fairness and Sustainability
- JENA WP 4 (ML Computing Infrastructure)
- Community connections and funding

Started initial discussion in the working groups

- Define goals and objectives
- Inviting interested members to participate
- Follow-up meetings will better define the future plans

WG1 - Foundation models

- Goals:
 - Facilitate research on large-scale foundation models (FMs) for fundamental physics
 - Provide infrastructure, resources, data and models, connect researchers, define problems & metrics

The Vision

sign up: https://bit.ly/eucaifcon24-wq1

WG 4: White paper for JENA WP4

- Define Machine Learning and Artificial Intelligence Infrastructure
 - define computing requirements for the next decade (JENA computing initiative)
- Mandate of the group:
 - Follow the technologies in this fast evolving field.
 - Analyse the potential impact on the ENA computing infrastructure needs.
 - Quantify the resource needs and define the interfaces and services that are needed by physicists to run ML workloads (looking at both training and inference).
- Timescale: White paper ready by end of the year
- Join the working group:
 - → https://indico.scc.kit.edu/event/3813/

Panel Discussions

- Directions Al and fundamental physics
- Al Infrastructure
- Building a European Coalition for AI in Fundamental Physics

Plenary Presentations

personal summary of some interesting plenaries (not complete)

Theoretical high-energy physics and AI (Matthew Schwartz)

Very interesting and fascinating talk (see slides)

- Past: collider physics
- **Present**: symbolic AI for theoretical physics
- Large Language Models show good capability for symbolic problems
 - Example: simplify computation of Feynman diagrams (polylogarithms)
 - approach based on reinforcement learning or transformers
 - Same approach can be used to other problems:
 - Simplifying spinor-helicity amplitudes
 - scattering amplitudes
- ML application also in string theory
- Future: can machines do theoretical physics?

Top Tagging (2008 – 2022)

$$\begin{split} f(x) &= 9 \left(-\text{Li}_3(x) - \text{Li}_3\left(\frac{2ix}{-i + \sqrt{3}}\right) - \text{Li}_3\left(-\frac{2ix}{i + \sqrt{3}}\right) \right) \\ &+ 4 \left(-\text{Li}_3(x) + \text{Li}_3\left(\frac{x}{x+1}\right) + \text{Li}_3(x+1) - \text{Li}_2(-x)\ln(x+1) \right) \\ &- 4 \left(\text{Li}_2(x+1)\ln(x+1) + \frac{1}{6}\ln^3(x+1) + \frac{1}{2}\ln(-x)\ln^2(x+1) \right) \end{split}$$

$$f(x) = -\text{Li}_3(x^3) - \text{Li}_3(x^2) + 4\zeta_3$$

Future

LLM are the immediate future

ALGORITHMIC PROGRESS IN LANGUAGE MODELS

Ho et al. arXiv:2403.05812

size is compute

- Biological intelligence grows by a factor of 2 in one million years
- Machine intelligence grows by a factor of 10 in 1 year

- · Both AI and biological intelligence grow exponentially
- Factor of 10⁶ difference in exponent
- Intersection, when machines and biology have comparable "intellegence" is now

algorithmic doubling time = 6 to 14 months!

Some interesting questions

- Physics requires creativity. Is Al creative?
 - GPT4 more creative than 99% of humans
- Augmented intelligence: can Al be a skill-leveler for highenergy physics theory?
 - with Al average physicist can become as Einstein
- Theoretical physics may have stalled in recent years
 - problems are maybe too difficult for humans
 - humans can handle only 5-9 concepts at once and like to visualize
 - computers can handle much more complexity
 - Example: could a cat ever learn to play chess?
- Language models are vey close to training themselves to be better physicists
- Suppose a machine understands the theory, do we need to understand it too?

Torrence Test score

Conclusions

- Machine learning is rapidly tranforming high energy physics
 - Current revolution in applications and advances are in "data science"
 - In hep-th and hep-ph problems are largely symbolic

1. How do we transition from data science to symbolic theoretical physics?

- It will get easier once we get started
 - Symbolic search problems (polylogarithms, spinor helicity)
 - Properties of the S-matrix (unitarity)
 - String Theory Vacuua

searching for simplicity

2. Generative Al is the future

- Short term: augmented intelligence
 - Machines help us organize information
 - Smooth transition to arXAIv: more and more AI input into arXiv papers
- Long term: artificial intelligence
 - Machines will suggest problems, solve problems: G Ph. T
 - Machines will dumb things down, so we can appreciate their work
 - Superhard problem in theoretical physics may finally be solved

Experimental particle physics and Al (Gregor Kasieczka)

- Role of Al is in experimental particle physics
- Very detailed and complete review (see <u>slides</u>).

- 1. Taggers
- 2. Reconstruction
- 3. Simulation
- 4. Unfolding
- 5. Anomaly Detection
- 6. Triggers
- 7. Inference (SBI)
- 8. Experimental Design

1. Taggers

Take aways

- Point clouds as powerful paradigm to represent data
- Additional structure in architecture boosts performance
- Over wide range: Best complexity/performance tradeoff by physics-informed models
- Overall highest performance reached via transfer learning

Challenges

- Calibration
 (domain adaptation:
 from simulation to
 collider data)
- uncertainty aware training
- Interpretability

3. Simulation

Strategy

1. Use classical simulation or collider data as input

2. Train generative surrogate

3. Oversample

Main Targets

- Event level kinematics
- Jet constituents
- Calorimeter showers
- pile-up interactions

3. Simulation

- Application: used in ATLAS (FastCaloGAN in ATLFAST3)
- Future outlook:
 - Importance of public datasets to compare algorithms
 (e.g CaloChallenge 2023)
- Some challenges:
 - Quality of generation
 - Complexity of samples
 - Integration in Geant4
 - Adaptability

4. Unfolding

- 2 approaches:
 - Reweighting based on classifiers
 - Morphing based on diffusion or generative models

Example: Unfold Z+jets distributions in six dimensions

Already applied to collider data: Lepton/jet event at H1

5. Anomaly Detection

- Model independent search of new physics
- CATHODE and CASE (CMS Anomaly Search Effort)

CATHODE

6 Anomaly detectors in parallel using full Run 2 data

6. Trigger

Trigger

Colliders with 40 million events/second

2 stage system (Trigger) reduces this to ~1 kHz for offline storage and analysis

Stage 1: Hardware based, using fieldprogrammable gate arrays (FGPAs) with microsecond latency

Improving selection criteria in trigger with Al yields better offline data

hls4ml to translate ML architectures to hardware language

Example: Triggering Outliers

Testing in CMS L1 Trigger

Example: Online graph building

https://fastmachinelearning.org/

Accelerator Physics and Al (Verena Kain)

- Using AI for accelerator complex at CERN
- CERN accelerator complex very diverse, many different types of beams and production schemes
 - current beam scheduling has severe impact on efficiency in running accelerators
 - hysteresis limiting also accelerator efficiency
- Future accelerators (like FCC) need to be run as an autonomous system
- Some Current example of Al usage in accelerators:
 - Bayesian Optimisation for control and optimisation of accelerator
 - ada[tive contínuos control for extracted spill in NA
 - Reinforcement Learning (RL)
 - problem online training often not possible (need accurate simulation, e.g. digital twin)

Example: RL at CERN

PS

- Correct RF phase & voltage for uniform bunch splitting (LHC beams)
- > Successful sim2real & fully operational
- ➤ Multi-agent (SAC) & CNN for initial guess
- ➤ Next: continuous controller (UCAP)

A. Lasheen, J. Wulff

PS to SPS

- Adjust fine delays of SPS injection kicker
- RL agent (PPO) trained on data-driven dynamics model
- > Ready for sim2real test

LINAC3 / LEIR

- PhD project (B. Rodriguez): control LINAC3 cavities for optimal injection efficiency into LEIR
- RL state based on VAE-encoded Schottky spectra
- Agent trained on data-driven dynamics model

SPS

- Steer DC beams in TT20 TL using splitfoil secondary emission monitors
- Works well in simulations, with noise and varying emittances
- > Ready for sim2real test

N. Bruchon, V. Kain

Courtesy M. Schenk

Efficient Particle Accelerators (EPA) project @ CERN

Time bounded project (5 years): improvements ready for **HL-LHC** (2029)

EPA is preparing a new CERN accelerator exploitation paradigm

→ blazing the trail for FCC

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

Nuclear Physics and Al (Amber Boehnlein)

- Al application in NP, current ones:
 - Detector Operations
 - monitoring, experiment control
 - Reconstruction
 - standard signal/background discrimination
- Future ambitions:
 - Detector Design for the Electron-Ion Collider
 - Theory/experiment integration
 - 3D imaging of internal structure of the proton
 - use generative AI for computational nuclear simulation and inverse design problems in nuclear theory

Gravitational wave physics and Al (Elena Cuoco)

- Gravitational wave analysis based on detecting a very small signal in a noise-dominated time series
- Use a template description of the signal and then perform Bayesian parameter estimation
- Several places for using Al

NOISE

- · Data cleaning
- · Glitch classification
- · Nonlinear noise
- ITF anomaly detection
- Glitch simulation

BURST

- ML-based method for detection
- · CCSN waveform classification

CBC

- Detection
- · Early warning
- · Anomaly detection

CW

- Clustering in the parameter space
- · Computing efficiency

SWBG

Noise correlation

PARAMETER ESTIMATION

· Faster and efficient methods

ALERT SYSTEM

Ad hoc hardware/software solution?

Some examples of AI in GW:

- Classifying different signals from core collapsed supernovae (CCSN) using CNN and LSTM (time series is like an image in time-frequency domain)
- Gravitational Wave modelling: waveform building using AI (e.g Gaussian process)
- CBC (Compact binary coalescence) detection using ML
- Anomaly detection (using auto-encoder based algorithms)
- Parameter estimation using autoregressive normalising flows

Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

Astroparticle Physics and AI (Siddarth Mishra-Sharma)

- A large amount of data is coming:
 - e.g. Vera Rubin observatory, Euclid, Next Generation CMB, etc..
- The ability to make robust conclusions is often limited by the challenges in connection theory to data
- Main Al usage:
 - Simulation-based inference
 - for inverting complex physical simulators
 - several applications existing
 - Generative models
 - for capturing the distribution of complex data
 - used to construct likelihood
 - Differentiable and probabilistic programming
 - for specifying models and enabling flexible inference
 - enable end-to-end gradient based optimisation

Conclusions

- Invert complex physical simulators
- Directly work with high-dim data

- Flexible specification of model components
- Enable high-dimensional optimization using gradient-based inference techniques

Final Keynote: Al for fundamental physics (Kyle Cranmer)

- Al/ML as emulators of complex simulations
- Scientific understanding

How does AI enable or enhance scientific understanding?

- computational microscope (providing information)
- resource of inspiration expanding human scope
- agent of understanding replacing human in generalising observations
 - human less essential here
- Use of ML in Physics vs Molecules & Materials
 - Many use of AI aimed at material and drug discovery
 - In physics ML is a component in data analysis pipeline
 - mistakes matter, need uncertainty quantification

Simulation-Based Inference

Deep learning and neural density estimation are effective at learning approximate surrogates for the likelihood and posterior, **revolutionizing principled statistical inference in science!**

• Removes the need for hand-engineered summary statistics that sacrifice power

33

Parallel Presentations

- Several diverse contributions especially from students and early career researchers.
- A lot on Al applications on fast simulation, simulation base inference, and pattern recognition

Parallel (Poster) contributions: b-hive (*Niclas Eich*)

- b-hive: a modular ML training framework for state-of-the-art object- tagging within the Python ecosystem at the CMS experiment
 - Full end-end pipeline: from ROOT file to training ML models
 - Deploying state of the art models (Particle Net, Transformers)
 - Pythonic framework
 - use coffee, awkward and numpy
 - support Tensorflow and PyTorch

see more at CERN-CMS-DP-2024-20

Conclusions

- Great conference with every expert of ML/AI in HEP and fundamental physics.
 - A large number of interesting contributions
 - Good occasion to talk to many people in AI/ML community
 - Thank you for the organisers
 (Sacha Caron and Cristoph Weniger)
- The next conference will be organised next year (in Cagliari, Italy)