DATE 17/06/2024

EP-SFT Group Meeting

RESEARCH OF THE SCHEDULING MECHANISMS IN JULIA DAGGER LIBRARY

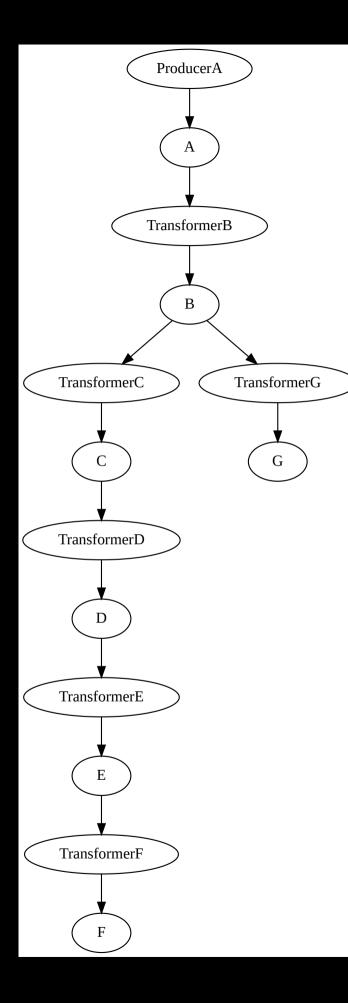
Summary

PRESENTED BY

Oleksandr Shchur (Ukrainian Catholic University, Ukrainian Remote Student Program)

SUPERVISOR

Benedikt Hegner

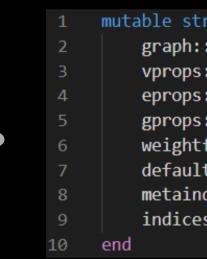

CO-SUPERVISOR

Mateusz Jakub Fila

Introduction

What is this project about?

The workloads of modern data processing frameworks used by LHC experiments can be very often described as directed acyclic graphs of tasks.


Objectives

- Parse a directed acyclic graph (DAG) representing the tasks workflow
- Schedule the tasks parallely with **Dagger**
- Get scheduler events and metrics logged
- Display the logging data using meaningful representations

presenting the tasks workflow I J representations

Parsing DAG

1	<pre><?xml version="1.0" encoding="UTF-8"?></pre>
2	<pre><graphml attr.name="class" attr.type="string" for="node" key0"="" xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-in</pre></td></tr><tr><td></td><td><pre><key id="></graphml></pre>
4	<pre><key attr.name="node_id" attr.type="string" for="node" id="key1"></key></pre>
5	<pre><key attr.name="type" attr.type="string" for="node" id="key2"></key></pre>
6	<pre><graph edgedefault="directed" id="G" n0"="" parse.edgeids="canonical" parse.nodeids="free" parse.order="no</pre></td></tr><tr><td>7</td><td><node id="></graph></pre>
8	<pre><data key="key0">MicroProducer</data></pre>
9	<data key="key1">ProducerA</data>
10	<pre><data key="key2">GaudiAlgorithm</data></pre>
11	
12	<node id="n1"></node>
13	<data key="key0"></data>
14	<data key="key1">A</data>
15	<data key="key2">DataObject</data>
16	
17	<node id="n2"></node>
18	<pre><data key="key0">MicroTransformer</data></pre>
19	<pre><data key="key1">TransformerB</data></pre>
20	<pre><data key="key2">GaudiAlgorithm</data></pre>
21	
22	<node id="n3"></node>
23	<data key="key0"></data>
24	<data key="key1">B</data>
25	<data key="key2">DataObject</data>
26	
27	inodo id_"DA">

.graphml file examples

mutable struct MetaDiGraph{T<:Integer,U<:Real} <: AbstractMetaGraph{T}</pre> graph::SimpleDiGraph{T} vprops::Dict{T,PropDict} eprops::Dict{SimpleEdge{T},PropDict} gprops::PropDict weightfield::Symbol defaultweight::U metaindex::MetaDict indices::Set{Symbol}

MetaDiGraph structure

Parsing DAG: pitfalls

Popular Julia package for graphs processing: JuliaGraphs organization packages:

	Q Type [] to search	≻_ (+ →)⊙
<> Code 💿 Issues 89 11 Pull requests 28 💿 Actions 😲 Security 🗠 Insights		
Graphs.jl (Public)	③ Watch 14 ▼	☆ Star 445 -
Deleted weeks wee		
Related packages		
It is an explicit design decision that any data not required for graph for graph for example) is expected to be stored outside of the graph structure		nformation,
Additional functionality like advanced IO and file formats, weighted	graphs, property graphs, and optimiz	zation-

related functions can be found in the packages of the JuliaGraphs organization

Packages

lgorithms and graph types

he central package of the ecosystem is Graphs.jl. It contains a standard graph iterface and some basic types for unweighted graphs, as well as a set of ombinatorial algorithms like shortest paths.

any of the other packages we list rely only on this interface, so as to be compatible ith arbitrary graph types.

More graph types

- SimpleWeightedGraphs.jl: Simple graphs with weighted edges.
- MetaGraphs.jl: Graphs with metadata on the vertices and edges.
- MetaGraphsNext.jl: A more efficient but less flexible alternative to MetaGraphs.jl.
- StaticGraphs.jl: Memory-efficient immutable graphs.
- MultilayerGraphs.jl: Graphs with multiple layers.

Parsing DAG: metagraphs Both MetaGraphs.jl and MetaGraphsNext.jl do not support loading graphs from .graphml

MetaGraphsNext.jl	Tutorial / File storage	View on GitHub	۰	Meta	Graphs
Search docs	File storage			Search docs	
Home	File Storage			Overview	
Tutorial	using Graphs using MetaGraphsNext		0	 Getting started 	
Basics				 Example use 	
Graphs.jl interface	MGFormat			MetaGraphs Funct	tions
File storage	MetaGraphsNext.jl overloads Graphs.savegraph to write graphs in a custom format called MG	Format, which is		License Informatio	on
• MGFormat	based on JLD2. It is not very readable, but it does give the right result when we load it back.				
ODTFormat	<pre>example = MetaGraph(Graph(), Symbol);</pre>				
Type stability	example2 = mktemp() do file, io				
Benchmark	<pre>savegraph(file, example)</pre>				
API reference	<pre>loadgraph(file, "something", MGFormat()) end</pre>				
	example2 == example			Z	
	true		(B)	3	struct
	DOTFormat			4	struct
				_	
	MetaGraphsNext.jl also support the more standard DOT encoding, which is used as follows.			Ę	

Overview

🖓 Edit on GitHub 🏼 🌣

MetaGraphs

docs stable docs dev 🔘 CI passing 🌳 codecov unknown

A flexible package for graphs with arbitrary metadata.

For a more performant option, check out MetaGraphsNext.jl

Getting started

Installation is straightforward: from the Julia pkg prompt,

pkg> add MetaGraphs

- t MGFormat <: AbstractGraphFormat end
- t DOTFormat <: AbstractGraphFormat end

Parsing DAG: GraphIC

JuliaGraphs also mentions:

Interfaces and visualization

Input / Output

- GraphIO.jl: Read graphs from files and write them to files in various formats.
- SNAPDatasets.jl: Extract graphs from the SNAP Datasets collection.

But it does not parse metadata...

0								
Code 🕑 Issues 20		ests 3 (i						
SraphIO.jl Public								
README A License								
Graph	0							
CI passing	Codeco	v 97%						
GraphIO provides support to G								
Currently, the	followin	g functio						
Format Read W								
EdgeList	\checkmark	\checkmark						
GML	\checkmark	\checkmark						
<u>Graph6</u>	\checkmark	\checkmark						
<u>GraphML</u>	\checkmark	\checkmark						
<u>Pajek</u> NET	\checkmark	\checkmark						

GEXF

				QT	fype 🕖 to search			- +	• 0
) Actions	Projects	③ Security	🗠 Insights						
					⊙ Watch 5 +	Service Fork 26	*	3 Star 61	•
								Ø	Ξ
code stv	le blue 6	े tested wit	h Agua.il						

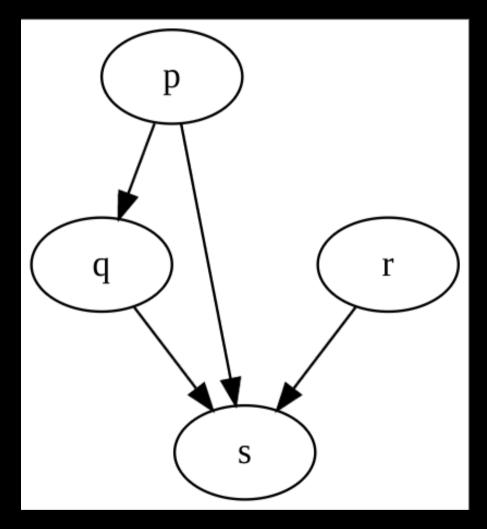
Graphs.jl for reading/writing graphs in various formats.

onality is provided:

Multiple Graphs	Format Name	Comment
	EdgeListFormat	a simple list of sources and dests separated by whitespace and/or comma, one pair per line.
\checkmark	GMLFormat	
\checkmark	Graph6Format	
\checkmark	GraphMLFormat	
	NETFormat	
	GEXFFormat	
	DOTFormat	

Parsing DAG: GraphMLReader

 Issues 1
 パン Pull requests 1 Code () Actions


ຳ Fixes

#3 opened on Mar 26 by SmalRat

Dagger: purpose

Essentially, **Dagger** is a scheduler, which "can run computations represented as <u>directed-acyclic-graphs</u> (DAGs) efficiently on many Julia worker processes and threads" (from Github readme)

Example from the Dagger documentation

Dagger

Objectives:

- Schedule tasks DAG (data dependencies only).
- Tasks are simple mockups with the minimal data exchange
- Set the limit of concurrently running DAGs
- Re-run tasks DAG without the creation overhead

Dagger: API

Old Dagger API

function oldAPI graph setup(time to sleep) a = Dagger.delayed(taskA)(time_to_sleep, 1) b = Dagger.delayed(taskB)(time_to_sleep, 2, a) c = Dagger.delayed(taskC)(time_to_sleep, 3, a, b) d = Dagger.delayed(taskD)(time_to_sleep, 4, a, b, c) e = Dagger.delayed(taskE)(time_to_sleep, 5, a) f = Dagger.delayed(taskF)(time to sleep, 6, a, b, c, d, e) return f

function modernAPI graph setup(time to sleep) a = Dagger.@spawn (taskA)(time to sleep, 1) b = Dagger.@spawn (taskB)(time to sleep, 2, a) c = Dagger.@spawn (taskC)(time to sleep, 3, a, b) d = Dagger.@spawn (taskD)(time to sleep, 4, a, b, c) e = Dagger.@spawn (taskE)(time to sleep, 5, a) f = Dagger.@spawn (taskF)(time to sleep, 6, a, b, c, d, e)

return f

end

scheduled graph = modernAPI graph setup(1) res = fetch(scheduled graph)

end

```
ctx = Dagger.Sch.eager_context()
scheduled graph = oldAPI_graph_setup(1)
result reference = compute(ctx, scheduled graph)
res = collect(ctx, result reference)
```

Static predefined DAG execution

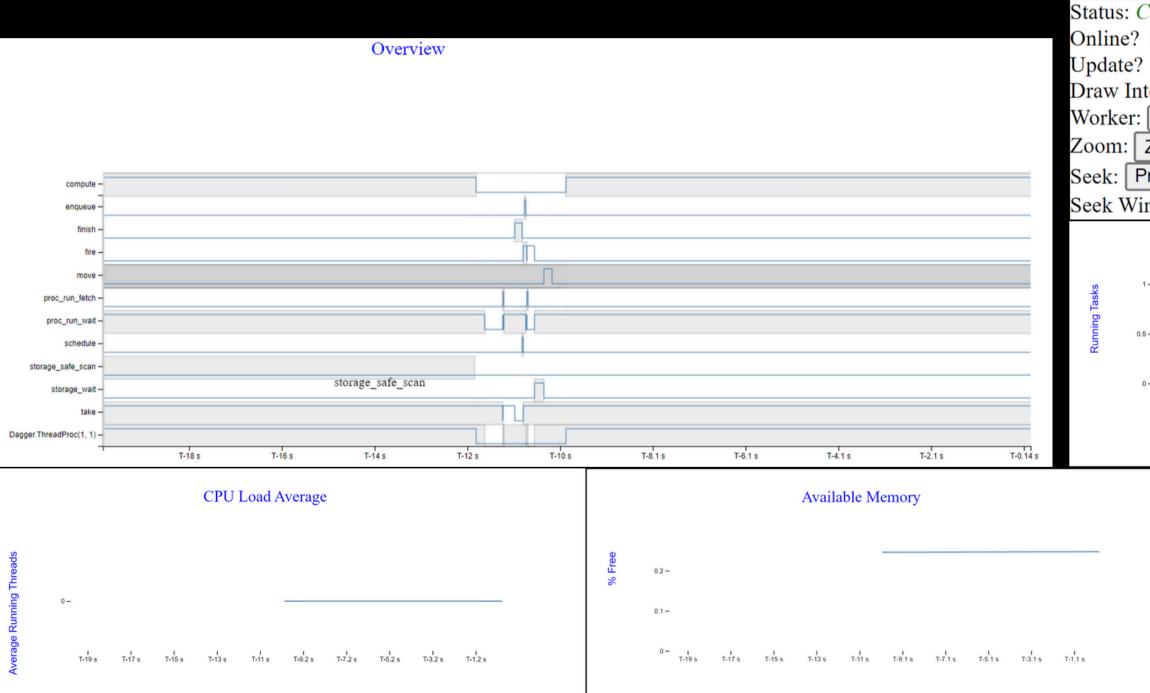
Modern Dagger API

Allows for the dynamic changes

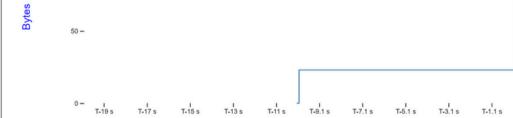
Dagger: logging (v 0.18.8)

DaggerWebDash

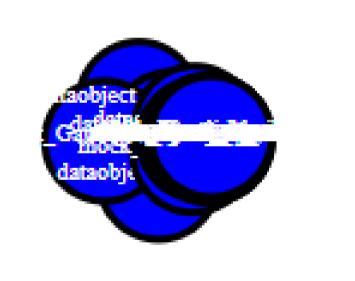
Ratu::: Cover; traf Vpdark 7 Vpdark 7 Darm Satru2 [Notes:: [: \scillator 1 Dear Satru2 [Sect:: [: \scillator 1 Bed: [: Them Is and Full] Bed: [: Them Is [: ThemIs [: Them				
Teek Window [9]				
ниция индиа и	Take Jake Jake Jake Jake	And point and a second point of the second poi	Worker Saturation	
CPU Load Average	Allocated Bytes		Available Memory	
treest forman	اللہ اللہ اللہ اللہ اللہ اللہ اللہ اللہ	, sila, sila, sila,	یں۔ ایس ایک	, site site

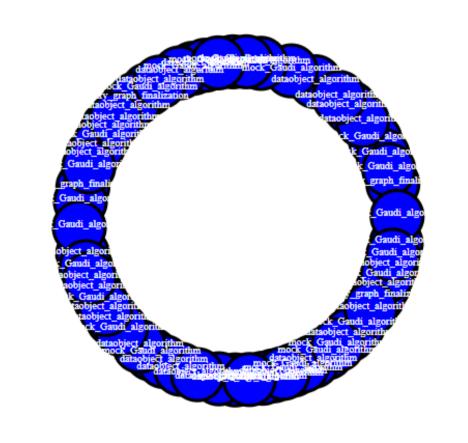

✓ TERMINAL

Raw logs processing

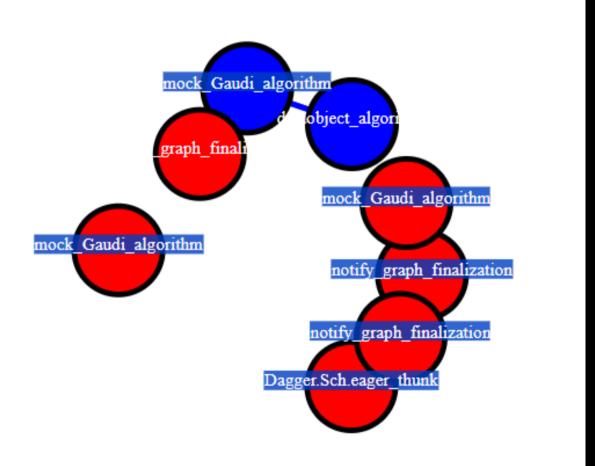

∑ julialauncher + ∨ Ⅲ 📋 …

TimespanLogging.Timespan[TimespanLogging.Timespan(:init_proc, (worker = 1,), nothing, 0x00 01c6bd382ccc94, 0x0001c6bd382f2624, Base.GC_Diff(13968, 0, 0, 123, 0, 0, 0, 0, 0), Timespa nLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UIn t64[])), TimespanLogging.Timespan(:init_proc, (worker = 1,), nothing, 0x0001c6bd67de29d8, 0x0001c6bd67e0f190, Base.GC_Diff(13872, 0, 0, 121, 0, 0, 0, 0, 0), TimespanLogging.Profile rResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), Timespa nLogging.Timespan(:scheduler_init, nothing, OSProc(1), 0x0001c6bca991e17c, 0x0001c6bd67e7b 7f0, Base.GC_Diff(72368704, 0, 0, 1010917, 1085, 0, 124564400, 1, 1), TimespanLogging.Prof ilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), Time spanLogging.Timespan(:schedule, (thunk_id = 10,), (thunk_id = 10,), 0x0001c6bd67ea73f0, 0x 0001c6bd67eeab3c, Base.GC_Diff(12752, 0, 0, 164, 0, 0, 0, 0, 0), TimespanLogging.ProfilerR esult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), TimespanL ogging.Timespan(:enqueue, (processor = Dagger.ThreadProc(1, 1), thunk_id = 10), nothing, 0 x0001c6bd6a3e68c8, 0x0001c6bd6a4058e0, Base.GC Diff(6768, 0, 0, 61, 0, 0, 0, 0, 0), Timesp anLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UI nt64[])), TimespanLogging.Timespan(:proc_run_wait, (worker = 1, processor = Dagger.ThreadP roc(1, 1)), nothing, 0x0001c6bd6a428f48, 0x0001c6bd6a437d90, Base.6C Diff(6352, 0, 0, 53, 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTra ces.StackFrame}}(), UInt64[])), TimespanLogging.Timespan(:proc_run_fetch, (worker = 1, pro cessor = Dagger.ThreadProc(1, 1)), (thunk_id = 10, proc_occupancy = 0x00000000, task_occup ancy = 0xffffffff), 0x0001c6bd6a450624, 0x0001c6bd6a45d39c, Base.GC Diff(6528, 0, 0, 60, 0 , 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTrac es.StackFrame}}(), UInt64[])), TimespanLogging.Timespan(:fire, (worker = 1,), nothing, 0x0 001c6bd67f627a4, 0x0001c6bd6a480874, Base.GC Diff(350368, 0, 0, 4387, 0, 0, 0, 0, 0), Time spanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), TimespanLogging.Timespan(:storage_wait, (thunk_id = 10, processor = Dagger.Thr eadProc(1, 1)), (f = taskA, device = MemPool.CPURAMDevice), 0x0001c6bd6a4a933c, 0x0001c6bd 6a4c8ea8, Base.GC_Diff(7440, 0, 0, 75, 0, 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt 64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), TimespanLogging.Tim espan(:move, (thunk_id = 10, id = 0, processor = Dagger.ThreadProc(1, 1)), (f = taskA, dat a = taskA), 0x0001c6bd6a4e29fc, 0x0001c6bd6af3164c, Base.GC Diff(34056, 0, 0, 428, 0, 0, 0 , 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.Sta ckFrame}}(), UInt64[0x000002034a91bc20])), TimespanLogging.Timespan(:move, (thunk_id = 10, id = -1, processor = Dagger.ThreadProc(1, 1)), (f = taskA, data = 1), 0x0001c6bd6af497d8, 0x0001c6bd6bca8960, Base.GC_Diff(33864, 0, 0, 426, 0, 0, 0, 0, 0), TimespanLogging.Profil erResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[0x000002034 a91be10])), TimespanLogging.Timespan(:move, (thunk_id = 10, id = -2, processor = Dagger.Th readProc(1, 1)), (f = taskA, data = 1), 0x0001c6bd6bcc19c4, 0x0001c6bd6bcd3a70, Base.GC Di ff(6352, 0, 0, 55, 0, 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, V


DaggerWebDash: metrics



Connected	
terval: 1	
1 🗸	
Zoom In Zoom Ou	it
rev Next Full	
ndow: 20	
Wo	rker Saturation
-	
-	
1 I I I T-19 s T-17 s T-15 s T-13	s T-11s T-9.0s T-7.0s T-5.0s T-3.0s T-0.99s
	Allocated Bytes
	Anocated Dytes



DaggerWebDash: DAGs

DaggerWebDash: errors

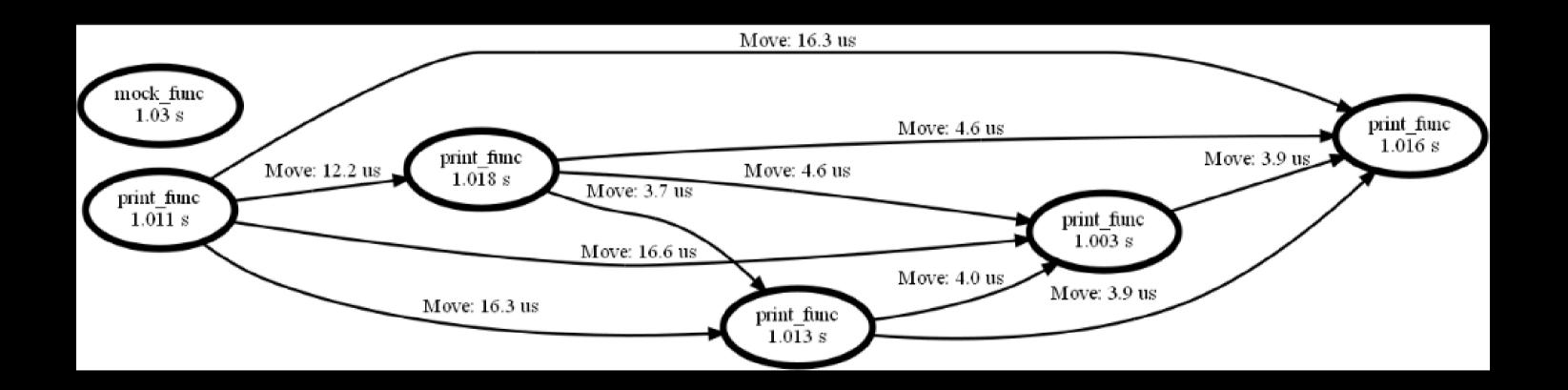
When using worker processes

```
From worker 5:
                                 @ TimespanLogging C:\Users\A
dmin\.julia\packages\TimespanLogging\DsD30\src\core.jl:294
                              [19] (::Dagger.Sch.var"#138#146
      From worker 5:
"{Dagger.Sch.ProcessorInternalState, UInt64, RemoteChannel{Ch
annel{Any}}, Dagger.ThreadProc})()
      From worker 5:
                                  @ Dagger.Sch C:\Users\Admin\
.julia\packages\Dagger\Tx54v\src\sch\Sch.jl:1197
                         <sup>L</sup> @ TimespanLogging C:\Users\Admin\.j
      From worker 5:
ulia\packages\TimespanLogging\DsD30\src\core.jl:229
                         ┌ Error: Error during log aggregation
      From worker 5:
      From worker 5:
                            exception =
      From worker 5:
                             IOError: listen: address already
 in use (EADDRINUSE)
      From worker 5:
                             Stacktrace:
      From worker 5:
                               [1] uv error
      From worker 5:
                                 @ .\libuv.jl:100 [inlined]
      From worker 5:
                               [2] #listen#13
                                 @ C:\Users\Admin\.julia\juli
      From worker 5:
aup\julia-1.10.2+0.x64.w64.mingw32\share\julia\stdlib\v1.10\S
ockets\src\Sockets.jl:628 [inlined]
      From worker 5:
                               [3] listen
                                 @ C:\Users\Admin\.julia\juli
      From worker 5:
aup\julia-1.10.2+0.x64.w64.mingw32\share\julia\stdlib\v1.10\S
ockets\src\Sockets.jl:627 [inlined]
      From worker 5:
                               [4] #listen#10
                                 @ C:\Users\Admin\.julia\juli
      From worker 5:
aup\julia-1.10.2+0.x64.w64.mingw32\share\julia\stdlib\v1.10\S
```

Upon receiving the request

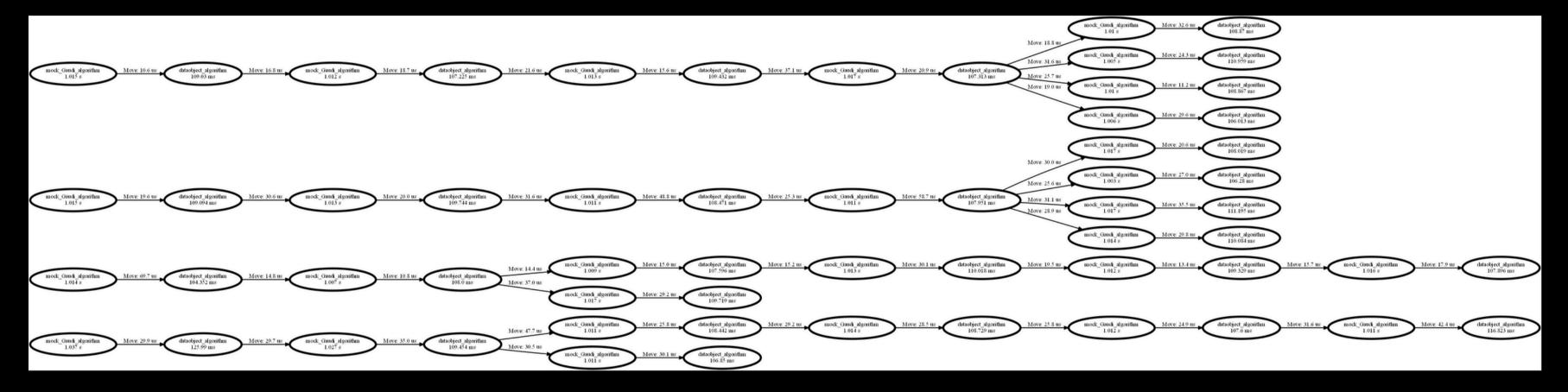
```
IOError: write: operation canceled (ECANCELED)
Stacktrace:
  [1] uv_write(s::Sockets.TCPSocket, p::Ptr{UInt8}, n::UInt64
    @ Base .\stream.jl:1066
  [2] unsafe write(s::Sockets.TCPSocket, p::Ptr{UInt8}, n::UI
nt64)
    @ Base .\stream.jl:1120
  [3] unsafe write
    @ .\io.jl:698 [inlined]
  [4] unsafe_write(s::Sockets.TCPSocket, p::Base.RefValue{UIn
t16}, n::Int64)
    @ Base .\io.jl:696
  [5] write
    @ .\io.jl:699 [inlined]
  [6] write
    @ .\io.jl:702 [inlined]
  [7] writeframe(io::HTTP.Connections.Connection{Sockets.TCPS
ocket}, x::HTTP.WebSockets.Frame)
    @ HTTP.WebSockets C:\Users\Admin\.julia\packages\HTTP\sJD
5V\src\WebSockets.jl:187
  [8] send(ws::HTTP.WebSockets.WebSocket, x::String)
    @ HTTP.WebSockets C:\Users\Admin\.julia\packages\HTTP\sJD
5V\src\WebSockets.jl:542
  [9] client_handler(sock::HTTP.WebSockets.WebSocket, id::Int
64, port::Int64, port_range::UnitRange{Int64}, config_updated
::Base.RefValue{Bool}, config::Vector{Any}, seek_store::Nothi
```

DaggerWebDash


Summary

- Plots are quite incomprehensible
- It is hard to summarize information for all the workers at once
- Random update times (from seconds to complete stagnation)
- Constantly throwing errors

vorkers at once ete stagnation)

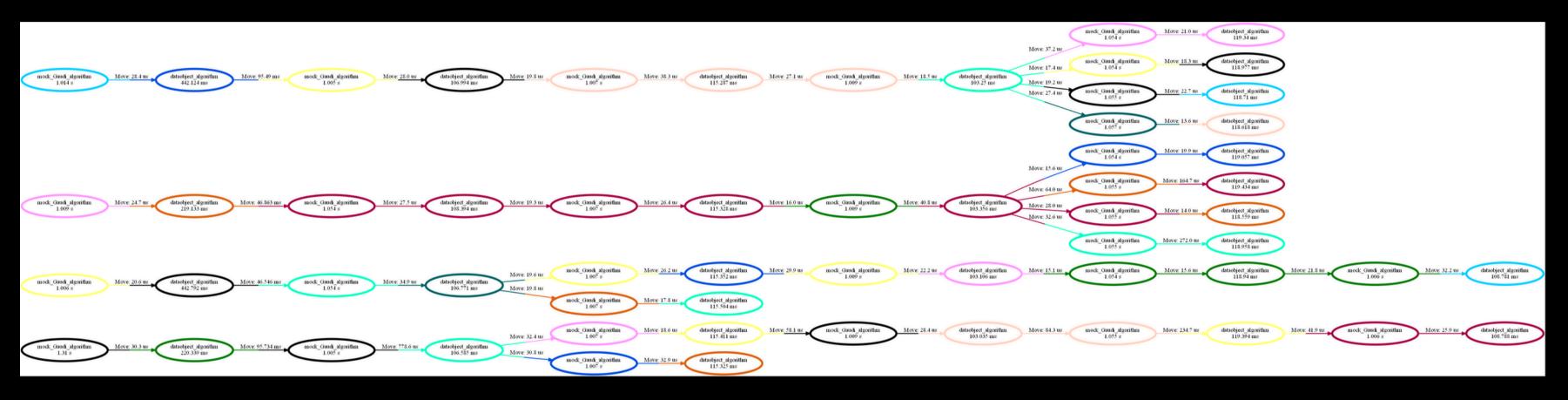

Using raw logs

Dagger provides means to convert logs to a DAG in the .dot format

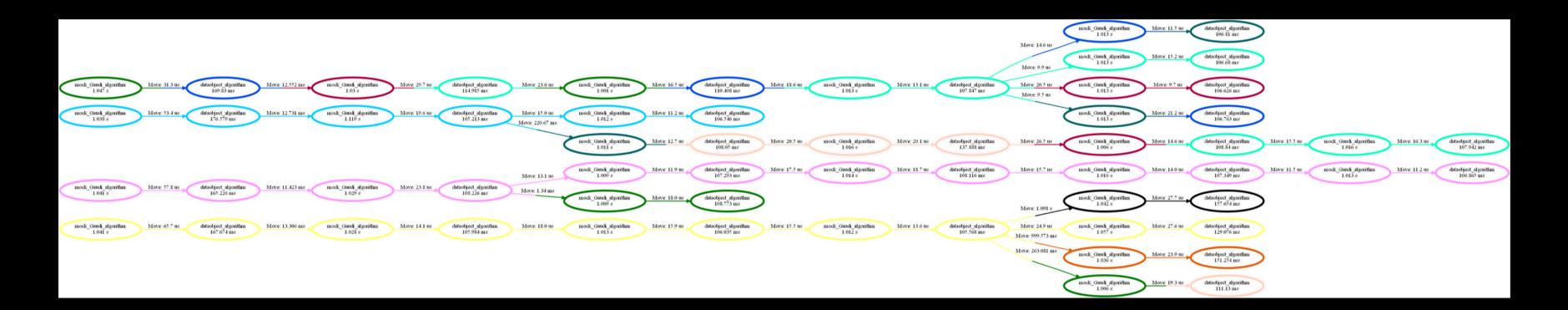
DAG from logs: results

"Move" operations time: ~10-100 us

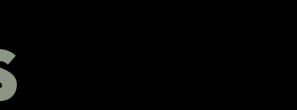
Sequential DAG execution (1 process, 1 thread)


DAG from logs: results

"Move" operations time: ~500-3000 ms (between processes)


Multiple processes DAG execution (13 processes, 1 thread each)

DAG from logs: results "Move" operations time: ~10-100 us (however, there are some outliers)

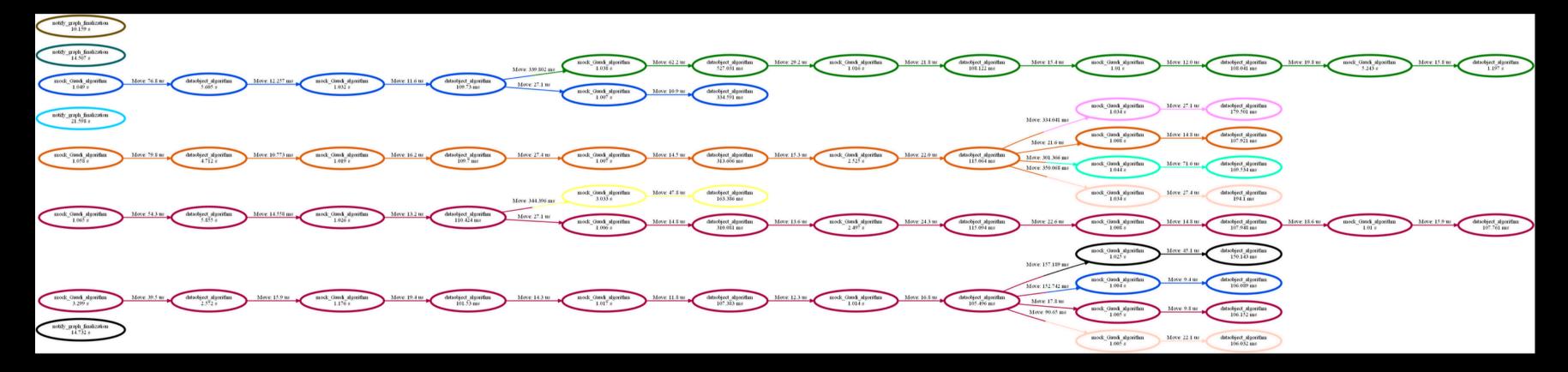


Multithreaded DAG execution (1 process, 13 threads)

DAG from logs: results

DAG execution (Main process - 7 threads; 6 workers - 1 thread)

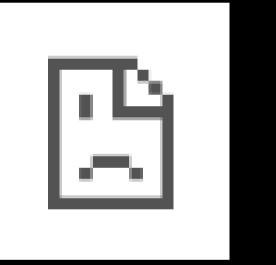
DAG from logs: results

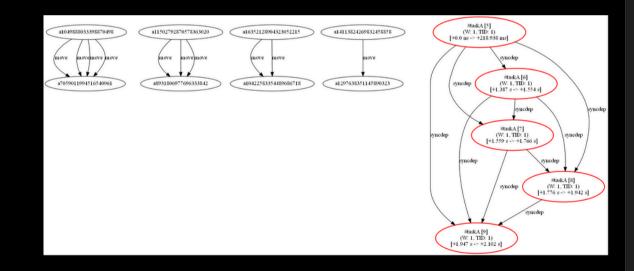

ThunkFailedException: Root Exception Type: CapturedException Root Exception: ConcurrencyViolationError("lock Operation

Oistributed.jl bug: ConcurrencyViolationError("lock must be held") ups

#478 opened on Mar 5 by schlichtanders

DAG execution (Main process - 1 thread; 6 workers - 2 threads)


Limit the number of concurrently running DAGs



Each DAG notifies the dispatcher (process 1) by RemoteChannel upon its completion. After that, the new tasks are scheduled.

Dagger: logging (v 0.18.11)

DaggerWebDash **Render** logs

Doesn't work anymore

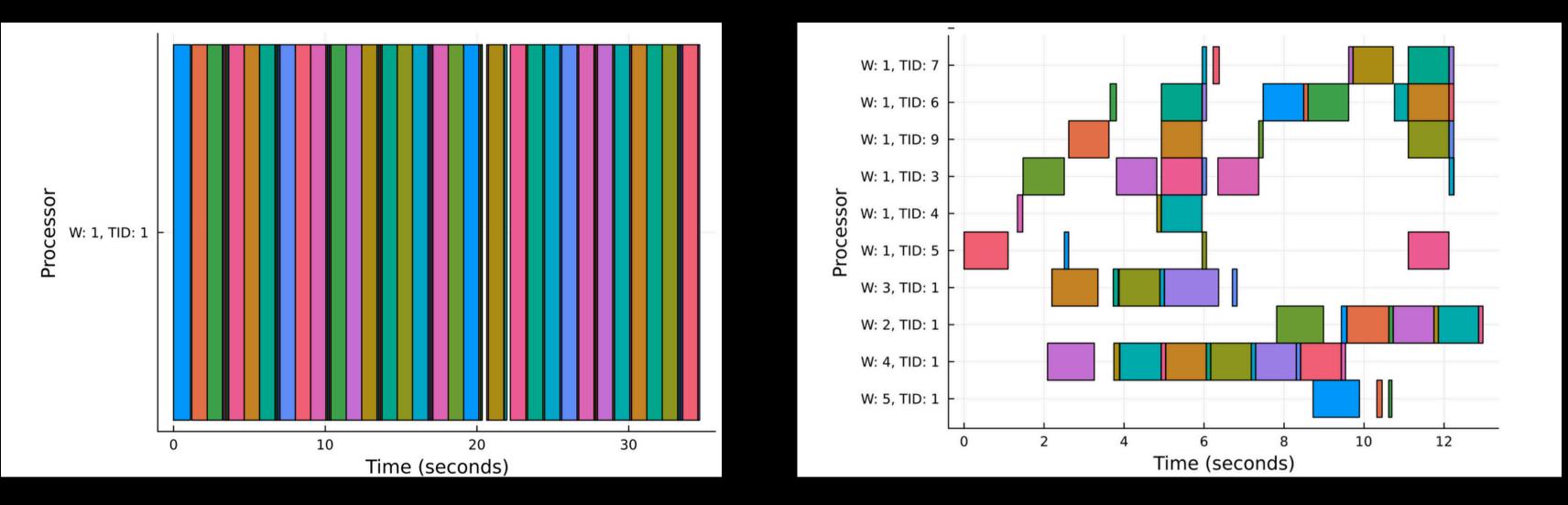
Raw logs processing

≥ julialauncher + ∨ 🖽 📋 …

V TERMINAL

TimespanLogging.Timespan[TimespanLogging.Timespan(:init_proc, (worker = 1,), nothing, 0x00 01c6bd382ccc94, 0x0001c6bd382f2624, Base.GC Diff(13968, 0, 0, 123, 0, 0, 0, 0, 0), Timespa nLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UIn t64[])), TimespanLogging.Timespan(:init_proc, (worker = 1,), nothing, 0x0001c6bd67de29d8, 0x0001c6bd67e0f190, Base.GC_Diff(13872, 0, 0, 121, 0, 0, 0, 0, 0), TimespanLogging.Profile rResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), Timespa nLogging.Timespan(:scheduler_init, nothing, OSProc(1), 0x0001c6bca991e17c, 0x0001c6bd67e7b 7f0, Base.GC Diff(72368704, 0, 0, 1010917, 1085, 0, 124564400, 1, 1), TimespanLogging.Prof ilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), Time spanLogging.Timespan(:schedule, (thunk_id = 10,), (thunk_id = 10,), 0x0001c6bd67ea73f0, 0x 0001c6bd67eeab3c, Base.GC_Diff(12752, 0, 0, 164, 0, 0, 0, 0, 0), TimespanLogging.ProfilerR esult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), TimespanL ogging.Timespan(:enqueue, (processor = Dagger.ThreadProc(1, 1), thunk id = 10), nothing, 0 x0001c6bd6a3e68c8, 0x0001c6bd6a4058e0, Base.GC Diff(6768, 0, 0, 61, 0, 0, 0, 0, 0), Timesp anLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UI nt64[])), TimespanLogging.Timespan(:proc_run_wait, (worker = 1, processor = Dagger.ThreadP roc(1, 1)), nothing, 0x0001c6bd6a428f48, 0x0001c6bd6a437d90, Base.GC Diff(6352, 0, 0, 53, 0, 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTra ces.StackFrame}}(), UInt64[])), TimespanLogging.Timespan(:proc_run_fetch, (worker = 1, pro cessor = Dagger.ThreadProc(1, 1), (thunk id = 10, proc occupancy = 0x00000000, task occup ancy = 0xffffffff), 0x0001c6bd6a450624, 0x0001c6bd6a45d39c, Base.GC_Diff(6528, 0, 0, 60, 0 , 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTrac es.StackFrame}}(), UInt64[])), TimespanLogging.Timespan(:fire, (worker = 1,), nothing, 0x0 001c6bd67f627a4, 0x0001c6bd6a480874, Base.GC Diff(350368, 0, 0, 4387, 0, 0, 0, 0, 0), Time spanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), TimespanLogging.Timespan(:storage_wait, (thunk_id = 10, processor = Dagger.Thr eadProc(1, 1)), (f = taskA, device = MemPool.CPURAMDevice), 0x0001c6bd6a4a933c, 0x0001c6bd 6a4c8ea8, Base.GC_Diff(7440, 0, 0, 75, 0, 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt 64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[])), TimespanLogging.Tim espan(:move, (thunk_id = 10, id = 0, processor = Dagger.ThreadProc(1, 1)), (f = taskA, dat a = taskA), 0x0001c6bd6a4e29fc, 0x0001c6bd6af3164c, Base.GC Diff(34056, 0, 0, 428, 0, 0, 0 , 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.Sta ckFrame}}(), UInt64[0x000002034a91bc20])), TimespanLogging.Timespan(:move, (thunk_id = 10, id = -1, processor = Dagger.ThreadProc(1, 1)), (f = taskA, data = 1), 0x0001c6bd6af497d8,

0x0001c6bd6bca8960, Base.GC_Diff(33864, 0, 0, 426, 0, 0, 0, 0, 0), TimespanLogging.Profil erResult(UInt64[], Dict{UInt64, Vector{Base.StackTraces.StackFrame}}(), UInt64[0x000002034 a91be10])), TimespanLogging.Timespan(:move, (thunk id = 10, id = -2, processor = Dagger.Th readProc(1, 1)), (f = taskA, data = 1), 0x0001c6bd6bcc19c4, 0x0001c6bd6bcd3a70, Base.GC_Di ff(6352, 0, 0, 55, 0, 0, 0, 0, 0), TimespanLogging.ProfilerResult(UInt64[], Dict{UInt64, V


Dagger: fixing visualization

Fix write dag #531

 Conversation
 0
 --- Commits
 7
 Checks
 2
 Files changed
 2

C

Dagger 0.18.11: Gantt chart

1 process, 1 thread

Main process - 9 threads, 4 workers - 1 thread

Examples & Documentation

0.18.8

 \checkmark examples

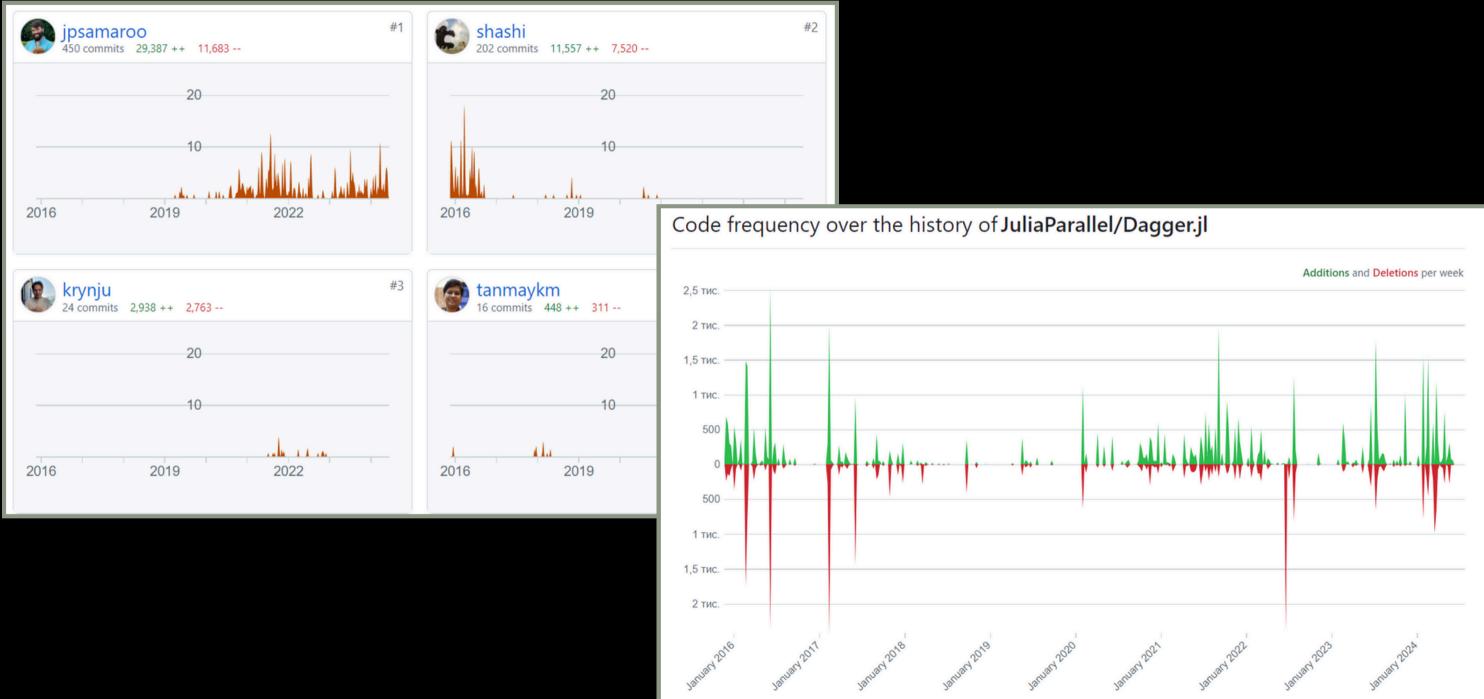
\checkmark auxiliary

- modernAPI_tasks.jl
- oldAPI_example_tasks.jl
- oldAPI_tasks.jl
- > examples_results
- \sim logging
- $\sim \log_{sink}$
- > results
- modernAPI_localeventlog.jl
- modernAPI_multieventlog.jl
- oldAPI_localeventlog.jl
- oldAPI_multieventlog.jl
- enable_logging.jl
- Logging_in_Dagger.md
- webdash.jl
- 🖊 Examples.md
- killing_procs.jl
- parallel_complex_DAGs_scheduling.jl
- parallel_simple_DAGs_scheduling.jl
- processors_example.jl

0.18.11

✓ examples	
∽ auxiliary	
🔹 example_tasks.jl	U
example_tasks.md	U
> examples_results	
∼ logging	
✓ enable_logging	
write_DAG_modernAPI.jl	U
write_DAG_oldAPI_custom_logging.jl	U
write_DAG_oldAPI.jl	U
✓ log_sink	
> results	
modernAPI_localeventlog.jl	м
modernAPI_multieventlog.jl	
oldAPI_localeventlog.jl	
oldAPI_multieventlog.jl	м
🔹 enable_logging.jl	
🔻 Logging_in_Dagger.md	м
👶 webdash.jl	м
killing_procs.jl	
parallel_complex_DAGs_scheduling.jl	м
parallel_simple_DAGs_scheduling.jl	м
processors example.il	

Dagger: summary


Issues

- Many features are undocumented
- Some documented features do not work
- Frequent updates are not backward compatible
- Relatively small community

Dagger is promising , but it may be too early to use it

Advantages Actively maintained Easy to use, when documented

Dagger: updates

Thank you for your attention!