
RESEARCH OF THE
SCHEDULING MECHANISMS
IN JULIA DAGGER LIBRARY

Summary
Oleksandr Shchur
(Ukrainian Catholic University,
Ukrainian Remote Student Program)

17/06/2024

EP-SFT Group Meeting

PRESENTED BY

DATE

Benedikt Hegner

SUPERVISOR

Mateusz Jakub Fila

CO-SUPERVISOR

ProducerA

A

TransformerB

B

TransformerC TransformerG

C

TransformerD

D

TransformerE

E

TransformerF

F

G

Introduction
What is this project about?

The workloads of modern data processing
frameworks used by LHC experiments can
be very often described as directed
acyclic graphs of tasks.

Objectives

Parse a directed acyclic graph (DAG) representing the tasks workflow
Schedule the tasks parallely with Dagger
Get scheduler events and metrics logged
Display the logging data using meaningful representations

Parsing DAG

.graphml file examples MetaDiGraph structure

Parsing DAG: pitfalls
Popular Julia package for graphs processing: JuliaGraphs organization packages:

Parsing DAG: metagraphs
Both MetaGraphs.jl and MetaGraphsNext.jl do not support loading
graphs from .graphml

Parsing DAG: GraphIO

JuliaGraphs also mentions:

But it does not parse metadata...

Parsing DAG: GraphMLReader

Dagger: purpose

Essentially, Dagger is a scheduler, which “can run
computations represented as directed-acyclic-graphs
(DAGs) efficiently on many Julia worker processes and
threads” (from Github readme)

Example from the
Dagger documentation

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Dagger
Objectives:

Schedule tasks DAG (data dependencies only).
Tasks are simple mockups with the minimal data exchange
Set the limit of concurrently running DAGs
Re-run tasks DAG without the creation overhead

Dagger: API
Old Dagger API Modern Dagger API

Static predefined DAG execution Allows for the dynamic changes

Dagger: logging (v 0.18.8)
DaggerWebDash Raw logs

processing

DaggerWebDash: metrics

DaggerWebDash: DAGs

DaggerWebDash: errors
When using worker processes Upon receiving the request

DaggerWebDash
Summary

Plots are quite incomprehensible
It is hard to summarize information for all the workers at once
Random update times (from seconds to complete stagnation)
Constantly throwing errors

Using raw logs
Dagger provides means to convert logs to a DAG in the .dot format

Sequential DAG execution (1 process, 1 thread)

DAG from logs: results
“Move” operations time: ~10-100 us

DAG from logs: results

Multiple processes DAG execution (13 processes, 1 thread each)

“Move” operations time: ~500-3000 ms (between processes)

DAG from logs: results

Multithreaded DAG execution (1 process, 13 threads)

“Move” operations time: ~10-100 us (however, there are some outliers)

DAG from logs: results

DAG execution (Main process - 7 threads; 6 workers - 1 thread)

DAG from logs: results

DAG execution (Main process - 1 thread; 6 workers - 2 threads)

Limit the number of concurrently
running DAGs

Each DAG notifies the dispatcher (process 1) by RemoteChannel upon its
completion. After that, the new tasks are scheduled.

Dagger: logging (v 0.18.11)
DaggerWebDash Raw logs

processing

Doesn't work anymore

Render logs

Dagger: fixing visualization

Main process - 9 threads,
4 workers - 1 thread

1 process, 1 thread

Dagger 0.18.11: Gantt chart

Examples & Documentation

0.18.8 0.18.11

Dagger: summary

Many features are undocumented
Some documented features do not work
Frequent updates are not backward
compatible
Relatively small community

Issues
Actively maintained
Easy to use, when documented

Advantages

Dagger is promising , but it may be too early to use it

Dagger: updates

Thank you for your attention!

