Study of very low energy neutrinos from the Sun and the Earth with the Borexino detector

1. Very short recall of the standard solar model (SSM) and of the neutrino oscillation phenomenon

2- Short description of the Borexino detector.

3- Status of the study of the solar neutrinos

4- Geo-neutrinos

5- What next.

CERN 9/6/2011

Why solar neutrinos?

Two main reasons[:]

 \mathbf{a}

The neutrino physics (neutrino oscillation) The physics of the Sun

The study of the neutrinos from the Sun has triggered the search for the neutrino oscillation. The pioneers have been the radiochemical experiments which studied the v_e flux via the following reactions: ⁷¹Ga(v_e , e⁻)⁷¹Ge, E_{th} = 233 keV(Gallex, Sage, GNO) and ³⁷Cl(v_e , e⁻)³⁷Ar, E_{th} = 814 keV (Homestake). They found a deficit with respect to the previsions of the S.S.M., but they were unable to measure separately the various solar neutrino fluxes.

Later this deficit has been confirmed by two Cherenkov real time experiments: SuperK and SNO, with E_{th} at 5 Mev (more recently decreased by SNO to 3 MeV corresponding to 4.2 v energy). The definitive evidence for the oscillation phenomenon has been obtained by SNO via the charged current: $v_e+d=p+p+e^-$ and the neutral current: $v_x+d=p+n+v_x$, measured at the same time; the n.c., induced by all neutrinos showed a rate compatible with the total solar flux as predicted by the SSM.

CERN 9/6/2011

Nuclear reactions in the Sun

Solar Neutrino Fluxes- metallicity problem

	ν flux	GS98	AGS09	cm ⁻² s ⁻¹
-	рр	5.98 (1±0.006)	6.03 (1±0.006)	x 10 ¹⁰
1	рер	1.44 (1±0.012)	1.47(1±0.012)	x 10 ⁸
	hep	8.04 (1±0.30)	8.31 (1±0.30)	x 10 ³
	⁷ Be	5.00 (1±0.07)	4.56 (1±0.07)	x 10 ⁹
	⁸ B	5.58 (1±0.14)	4.59 (1±0.14)	x 10 ⁶
	¹³ N	2.96 (1±0.14)	2.17 (1±0.14)	x 10 ⁸
	¹⁵ O	2.23 (1±0.15)	1.56 (1±0.15)	x 10 ⁸
	¹⁷ F	5.52 (1±0.17)	3.40 (1±0.16)	x 10 ⁶

SHP11:

A.M. Serenelli, W. C.Haxton and C. Pena-Garay, arXiv:1104.16.39v1 [astro-ph]

@ GS98 (high metallicity)-solar atmosphere modeling in one dimension starting from the solar surface abundances (via spectroscopy)-excellent agreement with the helioseismology (sound speed)

AGS09 (low metallicity)- 3D modeling- less carbon, nitrogen, oxygen, neon and argon
 - disagreement with the helioseismology

CERN 9/6/2011

Neutrino oscillation

 $|\boldsymbol{v}_{\alpha}\rangle = \sum_{i} U_{\alpha,i} |\boldsymbol{v}_{i}\rangle$

2 v approach

 v_{α} , flavor eigenstates v_{i} , mass eigenstates $U_{\alpha,i}$, mixing matrix

IN VACUUM

 $P(v_e \rightarrow v_{\mu}) = \sin^2 2\theta \cdot \sin^2 \left(\Delta m^2 \frac{L}{4E}\right)$ $L_V = \frac{4\pi E}{\Delta m^2}$

 θ —>mixing angle; $\Delta m^2 = m_2^2 - m_1^2$ for solar

MSW

 v_{e} interacts via charged current and neutral current $v_{u,\tau}$ interact only via neutral current

$$P(v_e \rightarrow v_{\mu}) = \sin^2 2\theta_M \cdot \sin^2 \left(\Delta m_M^2 \frac{L}{4E}\right) \qquad \sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - X)^2}$$
$$\Delta m_{M,12}^2 = \Delta m_{12}^2 \sqrt{\sin^2 2\theta + (\cos 2\theta - X)^2} \qquad L_M = \frac{4\pi E}{\Delta m_M^2} = \frac{L_V}{\sqrt{\sin^2 2\theta + (\cos 2\theta - X)^2}} \qquad X = \frac{2\sqrt{2}G_F n_e E}{\Delta m^2}$$
$$CERN 9/6/2011 \qquad Gianpaolo Bellini - Universita' and INFN Milano$$

Matter effect is dominating if $\cos 2\theta < X = \frac{2\sqrt{2}G_F n_e E}{\Delta m_{12}^2}$

Vacuum is dominating if $X << \cos 2\theta$

On the basis of $n_e E$, the oscillation is either vacuum driven or matter enhanced

In the Sun n_e can be considered constant, then the regime depends essentially on the neutrino energy.

CERN 9/6/2011

Three v approach- v_1, v_2, v_3

 v_3

Two mass differences : Δm^2_{atm} , Δm^2_{solar}

Three mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$

 θ_{12} measured with solar

 θ_{23} measured with atmospheric

 θ_{13} very small or zero-if \neq 0 and complex mixing matrix, then CP is violated in the ν sector # experiments just to measure θ_{13} (Double-Chooz;T2K, Reno, Daya Bay)

CERN 9/6/2011

Global Analysis- two v oscillation- $\theta_{13}=0$

All Solar without Bx+ Kamland

Pep and CNO, fixed at SSM values

Kamland: \overline{v}_e from reactors (180 km baseline)- Δm^2 region explored: 10⁻⁵-10⁻⁴ eV²

Best fit values: $\Delta m^2 = 7.50 \left\langle \begin{smallmatrix} +0.17 \\ -0.23 \end{smallmatrix} \right| \cdot 10^{-5} eV^2$ $\tan^2 \theta = 0.46 \left\langle \begin{smallmatrix} +0.04 \\ -0.03 \end{smallmatrix} \right|$

> SHP11: A.M. Serenelli, W. C.Haxton and C. Pena-Garay, arXiv:1104.16.39v1 [astro-ph

ALL SOLAR ONLY without BX

Best fit values: $\Delta m^2 = 5.37 \Big\langle_{-0.07}^{+1.55} \bullet 10^{-5} eV^2$ $\tan^2 \theta = 0.47 \Big\langle_{0.03}^{0.03}$

All solar include: SuperK (phases I and III), CNO LETA and phase I, Radiochemical exps.

The tension all solar-Kamland could be explained with $\theta_{13} \neq 0$ or with the existence of an hypothetical sterile v

Universita' and INFN Milano

The situation before Borexino

The Borexino experiment

@ Borexino has been designed mainly to study low energy neutrinos from the Sun

- 300 tons of ultrapure liquid scintillator, carefully shielded against external background
- - → detect neutrino interactions over 160-200 keV
- Installed at the Gran Sasso Laboratory with an overburden of 1400 m of rock;
 1.2 cosmic muons/m²h
- @ Special care in the construction: special technology to radio-clean the scintillator; ultrapure N_2 for stripping(Rn, Ar, Kr); special care in the crude oil and in the pseudocumene procurement; extreme caution in the fabrication and assembly of the nylon vessel for the scintillator containment; special development and/or selection of all components; any operation in clean room or in N_2 or Ar atmosphere.

	Material	Typical conc. of the unpurified materials	Final radiopurity levels
¹⁴ C	scintillator	¹⁴ C/ ¹² C<10 ⁻¹²	${}^{14}C/{}^{12}C \cong 2 \cdot 10^{-18}$
²³⁸ U, ²³² Th equiv.	- Hall C dust - stainless. steel - nylon	} 10 ⁻⁵ - 10 ⁻⁶ g/g	$10^{-17} - 10^{-18} g/g$
K _{nat}	Hall C dust	∼ 10 ⁻⁶ g/g	$< 3 \cdot 10^{-14} g/g$
²²² Rn	external air.air underground	~20 Bq/m ³ ~40-100 Bq/m ³	$<1 \ \mu Bq/m^3$
⁸⁵ Kr ³⁹ Ar	in N ₂ for stripping	~ 40 ppt ~10 ppm	$\sim 0.16 \ mBq/m^3$ $\sim 0.5 \ mBq/m^3$
- ²²² Rn - ²³⁸ U, ²³² Th equiv. - ²²⁶ Ra	LNGS - Hall C water	Few kBq/m ³ ~10 ⁻¹⁰ g/g 2 Bq/m ³	$\sim 30 \ \mu Bq/m^3$ $\sim 10^{-14} \ g/g$

To check ultra-low radioactive levels a very high sensitivity detector has has been installed -- sensitivity: down to 5 10⁻¹⁶g/g U,Th equivalent; ≈ 10^{-18 14}C/¹²C **The counting test facility--C.T.F.**

Borexino is measuring the solar V_e e.s.

 $V_e + e \rightarrow V_e + e$

with a threshold at ~60 keV (hardware), ~160-200 keV (software) electron energy Measurements: Total energy released in the interactions, the position (via the

PMT timing), α/β discrimination

Goal: ⁷Be flux (862 keV)[Phys. Lett.B 658(2008)101; PRL 101(2008) 091302,last paper arXiv 1104.2150 (hep-ex) and 1104.1816 (hep-ex)]; ⁸B with a lower threshold down to 2.2 MeV [Phys.Rev.D,82,033006, 2010]; pep (1.44 MeV), possibly pp and CNO on the future;Geo-antineutrinos [Phys. Lett. B687,2010], Supernovae neutrinos. Best limits for rare events: Best limit on the Paullian transition [Phys. Rev. D82,3 (2010),033006]; limits on antineutrinos in the Sun flux [Phys. Lett.B, 687(2010) 687], etc. Further proposed measurement with a v and \overline{v} artificial sources

CERN 9/6/2011

Calibration campaigns

Am-Be source

				2	Y					n		²²² Rn loaded scintillator		
	⁵⁷ C0	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	n-p	n + ¹² C	n+Fe	• ²¹⁴ (Bi-Po)		
energy (MeV)	0.122	0.165	0.279	0.514	0.834	1.1	1.1, 1.3	1.4	2.226	4.94	~7.5	α/β discrimination		

Mc tuned with the calibration results

Energy scale resolution: $\frac{5\%}{\sqrt{E(MeV)}}$ from 200 keV to 2 MeV

Over 2 MeV: A little worse due to the less accuracy in the calibration. Light yield obtained by the γ sources with MC: 511 p.e./MeV

<u>uncertainty: 1.5%</u> <u>Fiducial volume:</u> Reconstruction program and MC tuned on

75.7 tons; 88 m³ Uncertainty:

 $^{+1.3}_{-0.5}\%$

(1 σ)

the calibration results: R<3m -1.67<z<1.67 cm

 $\Delta(x, y, z) = 10 - 12 \ cm$

CERN 9/6/2011

α/β discrimination-- two different approaches

The cut is chosen to not reject β particles- done bin per bin Reduction to 60% It removes also noise events

So called "soft cut"

So called "statistical subtraction"

Bin per bin the area below the α curve is evaluated and then the equivalent number of events is subtracted

CERN 9/6/2011

CUTS for the ⁷Be search

Muons: # detection in the ID and veto of 300 ms (cosmogenic n capture after 255 μ s); detection in the OD (Cherenkov) and veto of 2 ms livetime missed: 1.6%

Fiducial volume

Coincidences within 2 ms and events within 1.5 m of dist. are rejected - correlated events and $^{214}Bi-^{214}Po$ ($\lambda:238.1 \ \mu$ s)- no ν events contribute

Check the charge - $0.6 < \frac{C}{q_{exp}} < 1.6$ (q_{exp} is the expected mean charge for single hit-average among the involved PMTs)

Isotropic emission of the scintillation light around the interaction point -reject additional noise events

Rejected: pile-up of multiple events in the same DAQ gate :random ¹⁴C and fast coincidences, as ²¹²Bi-²¹²Po [λ :433.3 ns]-service triggers (laser, pulser, etc)- negligible prob. two v events fall in the same gate.

Only 0.6% of live-time is missed due to the cuts 2-6

CERN 9/6/2011

MC- fit range: 250-1600 keV Soft α subtraction

pp, pep, CNO fixed, according MSW-LMA high metallicity
free parameters: ⁷Be,⁸⁵Kr, ²¹⁰Bi (β emitter), ¹¹C, ²¹⁰Po (α emitter), ²¹⁴Pb (β emitter)

 Analytical- fit range 300-1250 keV statistical α subtraction

SYSTEM	ATICS	
source	%	
Trigger eff. and stability	<0.1	
Livetime	0.04	
Scintillator density	0.05	
Sacrifice of cuts	0.1	
Position reconstruction	$\begin{pmatrix} +1.3\\ -0.5 \end{pmatrix}$	
Energy scale	2.7	
Fit assumptions	1.7	
Fit methods	1.0	
Total syst errors	$\begin{pmatrix} +3.6\\ -3.4 \end{pmatrix}$	

28

First approach: fit in the standard F.V. the D and N spectra separately to obtain R_D and R_N .

 $A_{dn} = 0.007 \pm 0.073$ (systematic error negligible with respect to the stat.)

Second approach: 1) subtract *D* and *N* spectra, normalized to the day live time.

2) search for a residual component having the shape of the electron recoil spectrum due to the ⁷Be v.

F.V.< 3.3 m

²¹⁰Po ($\tau_{1/2}$ =138.38 days) not contributing in the same time to day and night Same procedure with D and N spectrum with α statistical subtraction- the difference between the two procedures quoted as systematic error.

A_{ND}= -0.001±0.012(stat.)±0.007(syst)

Comparison with SSM- metallicity puzzle

SHP11: A.M. Serenelli, W. C.Haxton and C. Pena-Garay, arXiv:1104.1639v1 [astro-ph]

GS98:

N. Grevesse and A. J. Sauval, Space Sciences Reviews 85, 161 (1998)

AGSS09: Aldo M. Serenelli *et al 2009 ApJ* **705** *L***123**

⁸B with lower threshold at 3 MeV (488 live days)

Background in the 3.0-16.5 MeV

✓ Cosmic Muons

External background

High energy gamma's from neutron captures

²⁰⁸Tl and ²¹⁴Bi from radon emanation from nylon vessel Cosmogenic isotopes ²¹⁴Bi and ²⁰⁸Tl from ²³⁸U and

²³²Th bulk contamination

Cuts

- @Muon cut + 2 mms dead time to reject induced neutrons (240 μs)
- ØFiducial volume
- **@Muon** induced radioactive **nuclides:**6.5 s veto after each crossing muon (~30% dead time)-¹⁰C (τ =27.8 s) tagged with the **Threefold coincidence** with the μ parent and the neutron capture)-¹¹Be (τ =19.9 s) statistically subtracted
- ²¹⁴Bi-²¹⁴Po coincidences rejected (τ=237 μs-²²²Rn daughter)
- @²⁰⁸TI (only one contributing to bkg above 3 MeV) from ²¹²Bi-²¹²Po we evaluate the ²⁰⁸TI

	45					_						1		
3 days	40			Data			Systematic errors							
345.	35			BPS09(GS	96)+LMA-MSW		=	Source		E	>3 Me	V	E>5 Me\	/
VeV	30	and a		WILL Dranal was	343)+LMA-M3W						σ_+	σ_{-}	σ_+	σ_{-}
2	25							Energy t	thresh	old	3.6%	3.2%	6.1%	4.8%
tunt	20							Fiducial -	mass		3.8%	3.8%	3.8%	3.8%
ő	15		I			1.1		Energy I	resolut	tion	0.0%	2.5%	0.0%	3.0%
4	10							lotal			5.2%	5.6%	1.2%	0.8%
1	10		-			11								
	5			aaaaaaaa							T	hreshold	4	$\tilde{p}_{8_{B}}^{ES}$
	0 4	6	8	10 1	2 14 Energy (Me							[MeV]	[10 ⁶ cr	$n^{-2} s^{-1}$]
					Energy Inte	.,	Supe	erKami	okaNI	DE I	[7]	5.0	2.35±0	.02±0.08
							Supe	erKami	okaNI	DE II	[2]	7.0	2.38±0	$0.05^{+0.16}_{-0.15}$
							SNO	D_2O	[3]			5.0	2.39^{+0}_{-0}	.24 + 0.12 .23 - 0.12
							SNO	Salt P	hase	[26]		5.5	2.35±0	$.22 \pm 0.15$
							SNO	Prop.	Coun	iter [2	27]	6.0	1.77^{+0}_{-0}	0.24 ± 0.09 0.21 ± 0.10
							Bore	xino				3.0	2.4±0	0.4 ± 0.1
							Bore	xino				5.0	2.7±0	0.4±0.2
										2	-			
			S	SM H.M	•	4.59	$9\pm0.$	14 10	J ⁶ CN	n ⁻² s	-1			
		-	S	SM L.M.		5.5	9±0.	14	N.	N.				
			E	xp. No o	scill.	5.0	±0.9		w	w	**			
	CEF	RN 9/6/20	11		Gianpaolo	Bellin	ni - Univ	ersita' an	d INFN	Milano				
	UL1				Claripaon	- sind							3	35

The survival probability after 3 years of Borexino data taking

¹¹C reduction 90%

Exposure loss 50%

Release of the result by July 2011.

38

CERN 9/6/2011

GEONEUTRINOS

2 The radioactive decays are an important source of the terrestrial heat;

- ⑦ The geo. estimations of the total terrestrial heat ranges from ≈31 to 44 TW. Geophysics models (Bulk Silicate Earth is the more accepted) predictions of the contribution of the radioactive decays to the Earth heat range from 100% (max. radiogenic), to about 50% (B.S.E.) to a smaller % limited to what observed in the crust (minimum radiogenic)
- Oscillation Some geological measurements are obviously limited to the crust, where the investigations are based upon bore-holes.

Radioactive decays are supposed to be present in the crust, in the mantle, but not in the core (chemical affinity).

Background sources: reactor antineutrinos and internal radioactivity

For reactors we have considered 194(Europe) + 245(World) power stations

Background due to the internal radioactivity:

• ${}^{13}C(\alpha,n){}^{16}O$ -very small due to the high level of radiopurity in Bx - ${}^{210}PO$

muon induced cosmogenic activity:⁹Li ($T_{1/2}$ =178.3ms, β-n,Q= 5.3,7.4 MeV) ⁸He ($T_{1/2}$ =119ms, β -n, Q= 1.8, 5.7, 8.6, 10.8, 11.2 MeV)- rejected with a veto of 2s after detected muons Total background i. r.: 0.14±0.02 events/100tons year remove

Error

[%]

3.2

2.5

1.0

0.02

Source

 θ_{12}

 P_{rm}

 E_i

0.4 Lr

Error

[%]

2.6

2.0

0.6

0.4

5.38

Data set: from Dec 2007 to Dec 2009
Total live time: 537.2 live days
Fiducial exposure after muon cuts and including detection efficiency: 252.6 ton-year
21 anti-v candidates selected

MC spectra for likelihood function

Unbinned ML best fit

Best-fit parameters from the likelihood analysis

S/N~5/1

N_{react}= $10.7_{-3.4}^{+4.3}$ No oscillation rejected at 2.9 σ The effective distance from Borexino is ~1000 km; $\phi_v \sim 10^5$ cm⁻² s⁻¹

43

Conclusions

(a) In 3 years of data taking, Borexino has measured the solar v from ⁷Be (<5%), from ⁸B with a lower threshold at 3 MeV and from pep (to be released soon).

@ The day/night in the ⁷Be region has been measured at 1%

@ These measurements provided the validation of the MSW-LMA model in the vacuum-driven oscillations and allowed the isolation of the LMA region in the $\Delta m^2 vs tg^2\theta$ plane with a global fit using only the solar v data.

@ Experimental evidence of geo-neutrinos has been reached at 4.2 σ C.L..

Output Description of the second second

What next

A re-purification campaign is in progress; ⁸⁵Kr has been already reduced to negligible level, while ²¹⁰Bi is halved. The campaign will be completed by the end 2011.

- # With a re-purified scintillator we plane to measure the pep flux with reduced error and the neutrinos from CNO (both in the transition regionpossible check on the non standard interactions).
- # An analysis of the geo-neutrinos with higher statistics would allow a discrimination among the various geophysics models.

Campaigns with two artificial sources to check the hypothesis of short baseline oscillations and the existence of a sterile neutrino.

An impressive flow of papers have been triggered by a few recent experimental hints and re-analysis of old results

> @ MiniBoone indication for a 3th ∆m² value in the v oscillation phenomenon;
> @ Very short base-line (VSBL) anomaly (reactors; gallium source anomaly);
> @ W map (effective number of v species: 4.34±0.87) sterile neutrino?

Minos (neutrino and antineutrino oscillation differ in ∆m²??) non standard v interactions? CPT violation?

Proposed measurement in Borexino with artificial sources:

⁵¹Cr;0.747 MeV v K capture– τ =39.96d-5 Mci ⁹⁰Sr-⁹⁰Y; \overline{v} β decay-1.8 MeV threshold-2 MeV av. energy τ=1.52 10⁴d-1 MCi

Tunnel below Borexino 4m from the inner vessel wall 8.25 m from the detector centre

hep-ph,1105.1705v1 and others

arXiv. hep-ex 0179257

New limits obtained with the Borexino

Channel	E MoV	τ _{lim} , y	τ _{lim} , y	Previous experiments
Channel	E_0 , we v	BOREXINO	CTF	and limits
$^{12}C \rightarrow ^{12}C^{NP} \gamma$	17.5	5.0 [.] 10 ³¹	2.1.10 ²⁷	4.2 10 ²⁴ NEMO-II
$^{16}O \rightarrow ^{16}O^{NP} \gamma$	21.8	-	2.1 [.] 10 ²⁷	1.0 [.] 10 ³² Kamiokande
	48-82	8 9.1029	5 0.1026	1.7-10 ²⁵ ELEGANT V.
с→втр	4.0-0.2	0.010	5.0 10	6.9-10 ²⁴ DAMA (Na+I)
$^{12}C \rightarrow ^{11}C^{NP}$ + n	2.2	3.4 [.] 10 ³⁰	3.7 [.] 10 ²⁶	1.0 [.] 10 ²⁰ Kishimoto et al
¹² C→ ⁸ Be ^{NP} +α	1.0-3.0	-	6.1·10 ²³	-
120 12NINP	10.0	2 1.1030	7 6.1027	3.1.10 ²⁴ NEMO-II
$\rightarrow \sim 10^{-1} \text{ for } +0^{-1} \text{ for } $	18.9	3.1.1030	7.0.10-	~8·10 ²⁷ LSD
$^{12}C \rightarrow ^{12}B^{NP}+e^++v_e$	17.8	2.1.10 ³⁰	7.7 [.] 10 ²⁷	2.6-10 ²⁴ NEMO-II

The Borexino results are 3-4 orders of magnitude stronger then CTF ones The limits for NP transitions in ¹²C with p-,n- and β^{\pm} - emissions are the best to date The limit on the NP transition in ¹²C with γ -emission is comparable to the same result for ¹⁶O obtained using Kamiokande data for γ BR=1 Borexino has unique parameters to study NP transitions with low Q

The relative strength of the NP transitions to the Normal Transitions

Channel	λ^{NP} , s ⁻¹ (¹² C)	$\Gamma^{NT} = \hbar \lambda^{NT}$	$\lambda^{\rm NT}$, s ⁻¹ (¹² C)	$\lambda^{\text{NP}}/\lambda^{\text{NT}}$	Previous
¹² C→ ¹² C ^{NP} + γ	5.0 [.] 10 ⁻³⁹	0.0015 MeV	2.3 [.] 10 ¹⁸	≤ 2.2 ·10 ⁻⁵⁷	≤ 2.3 [.] 10 ⁻⁵⁷
¹² C→ ¹¹ B(C) ^{NP} + p(n)	7.4 [.] 10 ⁻³⁸	12 MeV	1.8 [.] 10 ²²	≤ 4.1 ·10 ⁻⁶⁰	≤ 3.5 [.] 10 ⁻⁵⁵
$^{12}C \rightarrow ^{12}N(B)^{NP}+e^{\pm}+v$	4.1·10 ⁻³⁸	1.4 10 ⁻¹⁸ eV	2.0 [.] 10 ⁻³	≤ 2.1 ·10 ⁻³⁵	$\leq 6.5 \cdot 10^{-34}$

Phys. Rev. C81:034317,2010

