





**Revealing the Potential of the Higgs Boson:** 

# Recent ATLAS searches for HH production and combination

Rui Zhang

University of Wisconsin-Madison

on behalf of the ATLAS Collaboration

LHC Seminar, 28 May 2024

### The Higgs field and Standard Model







Englert and Brout & Higgs & Guralnik, Hagen and Kibble

#### What've been learnt since the discovery?



Rui Zhang

- All main production modes (ggF, VBF, VH, ttH+tH) established at > 5σ
- Couplings to gauge bosons and 3rd gen. charged fermions observed, evidence for  $H \rightarrow Z\gamma$
- Couplings to 2nd gen. charged fermions: evidence for H→µµ; first constraints on H→cc;
- Mass measured to < 0.1%
- J<sup>CP</sup> = 0<sup>++</sup> (alternative hypotheses excluded at > 99.9% C.L.)

#### But still very little knowledge about the shape of the Higgs potential.

### The Higgs potential



$$|\phi|_{\min} = \sqrt{-\frac{\mu^2}{2\lambda}} \equiv \frac{\nu}{\sqrt{2}}, \nu = 246 \text{ GeV}$$

When  $\mu^2 < 0$  the potential has a minimum at:

$$V(\phi) = \frac{1}{2}\mu^2 \phi^2 + \frac{1}{4}\lambda \phi^4$$

Measurement of  $\lambda$  is crucial to reconstruction the Higgs potential and therefore test the Higgs mechanism

Baryogenesis requires a first order electroweak phase transition, which would lead to a modification to the Higgs potential ...



### **Higgs self-coupling**

Rui Zhang

• Direct exploring the potential at each Higgs field value  $\phi$  is not possible.



 Probing the Higgs-self coupling is a key towards pinning down exact shape of the potential.

#### Study of Higgs boson pair production (HH) can shed light

### **HH production at LHC** $\sigma_{ggF}^{SM}(HH) = 31.05^{+6\%}_{-23\%}(scale + m_{top}) \pm 3.0\% (PDF + \alpha_s)$ fb



Rui Zhang

#### **Standard Model Total Production Cross Section Measurements**

Status: October 2023



Rui Zhang LHC Seminar: Recen

#### **Standard Model Total Production Cross Section Measurements**

Status: October 2023



H Rui Zhang

#### The challenges



- Destructive interference between the triangle and box amplitudes
  - $m_{\text{HH}}$  shape strongly depends on  $\kappa$
  - $\kappa_{\lambda} \sim 2.4$  max. destruction at m<sub>HH</sub> ~ **350 GeV**
- **Soft** kinematics for large  $|\kappa_{\lambda}|$ 
  - Decay production difficult to detect
- Hard kinematics for large  $|\kappa_{2V}|$



#### Need excellent experimental performance and analysis techniques

Rui Zhang

### HH from higher energy scales

• Higgs effective field theory (HEFT) framework



#### HH search can put constraints to the coefficients



### HH decay channels

#### Large decay fraction

|   |    | bb    | WW    | ττ     | ZZ     | ΥY      | ۲ | N       |
|---|----|-------|-------|--------|--------|---------|---|---------|
| b | b  | 34%   |       |        |        |         | ۲ | bk<br>• |
| W | /W | 25%   | 4.6%  |        |        |         |   | •       |
| τ | τ  | 7.3%  | 2.7%  | 0.39%  |        |         | ۲ | bk<br>• |
| Z | ZZ | 3.1%  | 1.1%  | 0.33%  | 0.069% |         |   | •       |
| Ŷ | /γ | 0.26% | 0.10% | 0.028% | 0.012% | 0.0005% | ٢ | bk<br>• |

- No single "golden channel"
- bbbb (34%):
  - The most abundant final state
  - Challenging multi-jet backgrounds
- bbyy (0.26%):
  - Low decay fraction
  - Excellent m<sub>YY</sub> resolution
- bbττ (7.3%):
  - Happy medium

#### **Clean final state**

📕 Rui Zhang

### HH decay channels

#### Large decay fraction

|    | bb    | WW    | ττ     | ZZ     | ΥY      |
|----|-------|-------|--------|--------|---------|
| bb | 34%   |       |        |        |         |
| WW | 25%   | 4.6%  |        |        |         |
| ττ | 7.3%  | 2.7%  | 0.39%  |        |         |
| ZZ | 3.1%  | 1.1%  | 0.33%  | 0.069% |         |
| ΥY | 0.26% | 0.10% | 0.028% | 0.012% | 0.0005% |

bbℓℓ + neutrinos (2.9%):

- Targeting where one H + bb
- multilepton (6.5%):
  - Targeting where both H → bb
    - Although including bbZZ(→4I)
  - In total 9 sub-channels
- Combining all above channels
  - Maximise the exploration of full Run 2 ATLAS data
  - Covering > 50% of HH decay

#### Clean final state

📕 Rui Zhang

### Today's focus

#### Recent HH results

| Nonresonant HH results                         | References                                                                                             |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Full Run 2 bbbb                                | Resolved: <u>Phys. Rev. D 108 (2023) 052003</u><br>Boosted: <u>arXiv:2404.17193</u> , submitted to PLB |  |  |
| Full Run 2 bbττ                                | arXiv:2404.12660, submitted to PRD                                                                     |  |  |
| Full Run 2 bbγγ                                | <u>JHEP 01 (2024) 066</u>                                                                              |  |  |
| Full Run 2 bbℓℓ+E <sub>T</sub> <sup>miss</sup> | <u>JHEP 02 (2024) 037</u>                                                                              |  |  |
| Full Run 2 multilepton                         | ATLAS-CONF-2024-005                                                                                    |  |  |

• HH full Run 2 combination <u>ATLAS-CONF-2024-006</u>



- Five analyses above are combined under κ and HEFT frameworks
- Presented in this seminar for the first time
- HH prospects <u>ATL-PHYS-PUB-2022-053</u>

Earlier results see LHC Seminar on 23rd November 2021 by Katharine Leney (ATLAS)

🚹 Rui Zhang

#### **ATLAS detector**

A general-purpose detector at the LHC with nearly  $4\pi$  coverage in solid angle.



H Rui Zhang

#### **Object reconstruction improvements**

Jets



All HH analyses are using particle-flow jets.



b-tagging

### **Other performance highlights**



Rui Zhang



Run: 311402 Event: 2695204841 2016-10-25 19:04:17 CEST

## 6666

Resolved: <u>Phys. Rev. D</u> 108 (2023) 052003 Boosted: <u>arXiv:2404.17193</u>

### bbbb selection and categorisation



- b-jet trigger
- $\geq$  4 b-jets p<sub>T</sub> > 40 GeV
- . І∆ηннІ < 1.5
- Veto Top-quark decay



- Large-R jet trigger
- ≥ 2 Xbb-tagged jets
- $p_T^H > 450$  (lead) 250 (sub) GeV
- VBF jets  $|\Delta \eta_{jj}| > 3$ ,  $m_{jj} > 1$  TeV
- Categorised based on I $\Delta\eta$ HH & XHH  $X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \text{GeV}}{0.1 m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \text{GeV}}{0.1 m_{H2}}\right)^2}$

$$\sqrt{\left(\frac{m_{H1} - 124 \text{GeV}}{0.1m_{H1}}\right)^{2} + \left(\frac{m_{H2} - 117 \text{GeV}}{0.1m_{H2}}\right)^{2}} \qquad \text{VBF categories}$$

$$VBF \text{ jets } |\Delta\eta_{jj}| > 3, m_{jj} > 1 \text{ TeV} \qquad VBE \text{ categories}$$

### bbbb pairing (resolved)



### bbbb background estimation



Rui Zhang

#### ★ Major background: QCD multijet



- In boosted analysis, a normalisation factor is derived
- In resolved analysis, neural networks learn transfer factor.
  - Easily handle multiple inputs simultaneously

### bbbb bkg estimation performance



NN improves the agreement with 4b events significantly.

💾 Rui Zhang

#### **bbbb results**

Rui Zhang



Constraints on coefficients are derived under HEFT and SMEFT. <u>Read for more</u>
 Cross-section limits are placed in seven HEFT benchmark scenarios.



Run: 351223 Event: 1338580001 2018-05-26 17:36:20 CES

# **bbtt**

arXiv:2404.12660

#### **bbtt selection and categorisation**



- Single- $\tau_{had}$  and di- $\tau_{had}$ triggers (high purity)
- $2 \tau_{had}$ ,  $e/\mu veto$

Rui Zhang

- Single  $\ell$  trigger (large acceptance)
- $\ell$  +  $\tau_{had}$  trigger (low  $\ell p_T$ )



 $1 \tau_{had}$ ,  $1 e/\mu$ igodol



### **bbtt background estimation**

**ATLAS** √s = 13 TeV, 140 fb<sup>-1</sup>

Rui Zhang

#### ★ Source of backgrounds



### **bbtt signal / background separation**

• One BDT is trained in each SR – in total 9 BDTs



Other BDT distributions in backup

Rui Zhang

#### **bbtt results**



Compatibility with previous full Run 2 result is maximum 2.5 $\sigma$  in SLT.

Rui Zhang





Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

### bbyy selection and categorisation



### **bbyy categorisation BDT**

#### Low mass BDT Optimise for large value κ<sub>λ</sub> (soft spectrum)

#### High mass BDT optimise for SM value κ<sub>λ</sub> and κ<sub>2ν</sub> (hard spectrum)



single H and yy-continuum

Rui Zhang

### bbyy signal and background modelling



H Rui Zhang

### **bbyy results**



```
95% CL interval -1.4 < \kappa_{\lambda} < 6.9:
leading channel in \kappa_{\lambda} constraint
95% CL interval -0.5 < \kappa_{2V} < 2.7
95% CL limit \mu_{HH} < 4.0 (5.0 exp)
Up to 17% sensitivity
improvement
compared to previous
full Run 2 result
```

- Data statistics
- Theory uncertainties on HH xsec
- Constraints on HEFT and SMEFT
   coefficients and seven HEFT
   benchmark scenarios.
   Read for more

# bbee4ETmiss

JHEP 02 (2024) 037

DISCLAIMER THIS IS NOT A CANDIDATE BBLL EVENT

#### bbll+ET<sup>miss</sup> selection



- Single lepton and dilepton triggers
- 2 light opposite charge leptons (same flavour or different flavours)

• 2 b-jets

Rui Zhang



•  $\geq$  2 VBF jets with p<sub>T</sub> > 30 GeV, max( $\Delta \eta_{ii}$ ) > 4, max(m<sub>ii</sub>) > 600 GeV



#### **bb***ll*+E<sub>T</sub><sup>miss</sup> signal/background separation

- BDT trained in VBF category
  - Signal: VBF HH  $\kappa_{\lambda} = 0$
  - Bkg: ggF HH, other SM processes
- Network trained in ggF category
  - Signal: ggF HH
  - Bkg 1: tt and tW
  - Bkg 2: other bkg
- 5 most significant bins are used in final fit
- 7 most significant bins are used in final fit



#### **bb***ll***+E**<sup>miss</sup> results



H Rui Zhang


# Multilepton



Rui Zhang

# Multilepton search strategy



Rui Zhang

# **Multilepton results**



95% CL interval –6.2 <  $\kappa_{\lambda}$  < 11.6

95% CL interval  $-2.5 < \kappa_{2V} < 4.6$ 

95% CL limit µнн < 17 (11 exp)

Dominated by data statistics

6 additional sub-channels included than 36fb<sup>-1</sup> publications, 4–9x improvement per existing sub-channel. New κ<sub>2V</sub> results.

Heavily employed MVA is the key





# **HH** combination

# Systematic uncertainties and correlation

No additional pruning is applied in the combination

| Final object reconstructions | bbbb | bbττ | bbyy | bbℓℓ+E <sub>T</sub> <sup>miss</sup> | multilepton |
|------------------------------|------|------|------|-------------------------------------|-------------|
| Luminosity/pileup            | ~    | ✓    | ✓    | ✓                                   | ~           |
| Jets                         | ✓    | ✓    | ✓    | ✓                                   | ~           |
| b-tagging                    | ✓    | ✓    | ✓    | ✓                                   | ✓           |
| Boosted jet/b-tag            | ✓    |      |      |                                     |             |
| Electrons                    |      | ✓    |      | ✓                                   | ✓           |
| Muons                        |      | ✓    |      | ✓                                   | ✓           |
| Taus                         |      | ✓    |      |                                     | ✓           |
| Photons                      |      |      | ✓    |                                     | ✓           |
| <b>E</b> <sub>T</sub> miss   |      | ✓    | ✓    | ✓                                   | ✓           |

- Common sources are correlated except if:
  - Different calibrations used

Rui Zhang

Different post fit profilings from different phase space

empty: unavailable or negligible

# Systematic uncertainties and correlation

| HH signal<br>modelling       | bbbb     | bbττ     | bbyy                  | bbℓℓ+E <sub>T</sub> <sup>miss</sup> | multilepton |
|------------------------------|----------|----------|-----------------------|-------------------------------------|-------------|
| QCD scale + m <sub>top</sub> | ✓        | <b>~</b> | <b>~</b>              | ✓                                   | ✓           |
| PDF + as                     | ✓        | <b>v</b> | <b>v</b>              | ✓                                   | ✓           |
| H branching ratio            | ✓        | <b>v</b> | <b>~</b>              | ✓                                   | ✓           |
| Parton shower                | ✓        | <b>v</b> | <b>/</b>              | ✓                                   | ✓           |
| к interpolation              | ✓        | <b>v</b> | ~                     | ~                                   |             |
| Bkg. modelling               | bbbb     | bbττ     | bbyy                  | bbℓℓ+E <sub>T</sub> <sup>miss</sup> | multilepton |
| Single Higgs                 |          | ✓        | <b>~</b>              |                                     | ✓           |
| Top quark                    |          | ✓        |                       | ~                                   |             |
| Z + jets                     |          | ✓        |                       | ~                                   | ✓           |
| Diboson                      |          | ✓        |                       |                                     | ✓           |
| Specific per chan.           | <b>v</b> | <b>v</b> | <ul> <li>✓</li> </ul> | ~                                   | <b>v</b>    |

Dominant uncertainties

empty: unavailable or negligible

- HH cross section theory calculation QCD scale +  $m_{top}$  (prefit  $^{+6\%}_{-23\%}$  on ggF HH)
- Normalisation of single H plus heavy-flavour jets on ggF (prefit 100% on ggF H yields)
- These two contribute most to the correlation

Rui Zhang

# Putting all together: HH production



- Dominant uncertainties: HH theory cross section uncertainty  $\binom{+6\%}{-23\%}$  in scale +  $m_{top}$ )
- Subdominant: modelling of single H associated with b-jets (lack of measurement)
- Dominant experimental uncertainties: 4b background estimation

Separated ggF and VBF limits in <u>backup</u>

# Putting all together: couplings



|                  | Best fit | Obs 95% CL  | Exp 95% CL  | Leading channel |
|------------------|----------|-------------|-------------|-----------------|
| Κλ               | 3.8      | [–1.2, 7.2] | [–1.6, 7.2] | bbγγ, bbττ      |
| K <sub>2</sub> v | 1.0      | [0.6, 1.5]  | [0.4, 1.6]  | bbbb (boosted)  |

### Detailed table in backup

# Putting all together: couplings



Relative contribution can be better seen in the 2D contours

💾 Rui Zhang

# **Complementary contributions**

Reminder: when  $\kappa_{\lambda}$  moves away from SM, kinematics gets **softer** 



# **Complementary contributions**

Reminder: when  $\kappa_{2V}$  moves away from SM, kinematics gets harder



Rui Zhang

# Putting all together: HEFT



Note:

- Multiple minima due to quadratic structure of HEFT parametrisation
- Best fit driven by bbbb where a signal shape is picked to fit the gap between data and background the best

1D scans in <u>backup</u>

Benchmark results in backup



# Et prospects

# **Projection to HL-LHC**

- Combination of bbbb +  $bb\tau\tau$  +  $bb\gamma\gamma$ 
  - Baseline: 2× theory/modelling, 2× b-tagging, others objects almost Run 2-like (conservative)
  - HH discovery significance of 3.4 $\sigma$ ;  $\kappa_{\lambda}$  constrained within [0.0, 2.5] at 95% CL
  - Based on previous round of full Run 2 results. Already 13% improvement with this round.



- Sensitivity driven by theoretical uncertainties on HH cross-section and:
  - b-tag performance in bbbb (potential improvement from ITk and better b-tagging)
  - background modelling uncertainty in bbγγ

Rui Zhang

additional heavy-flavour jet radiation in single Higgs background

# Standing in Run 3

 Benefit from better triggers, improved object ID, more refined analyses ...

**ATLASTauTriggerPublicResults** Trigger efficiency ATLAS Simulation All triggers:  $\varepsilon(HH \rightarrow bb\tau\tau) = 88.8\%$ .2 Run 3  $\tau$ -triggers:  $\varepsilon(HH \rightarrow bb\tau\tau) = 74.4\%$ Preliminary Run 2  $\tau$ -triggers:  $\varepsilon(HH \rightarrow bb\tau\tau) = 69.0\%$ 0 √s = 13.6 TeV 4 jets (2 b-tagged):  $\varepsilon(HH \rightarrow bb\tau\tau) = 67.7\%$  $\kappa_{\lambda} = 1, bb\tau_{h}\tau_{h}$ 0.8 Offline selection:  $\tau_{0} p_{-}^{vis}$ >25 GeV,  $I\eta l$ <2.5, loose RNN  $\tau$ -ID 0.6  $\tau_{1} p_{\tau}^{\forall is} > 20 \text{ GeV}, |\eta| < 2.5, \text{ loose RNN } \tau \text{-ID}$ 2 jets, p\_>20 GeV, Inl<2.5, 0.4 b-tagged (GN2,  $\varepsilon_{h} \approx 82\%$ ) 0.2 . . . . | .8 2 Run 1.7 1.6 .5 9 4 Ratio .3 700 300 400 500 600 800 900 1000

### **ATLASBJetTriggerPublicResults OVED** $\begin{array}{c} 1.2 \\ \Rightarrow \\ 1.0 \end{array}$ Run 3 main + delayed streams: $\epsilon(HH \rightarrow 4b) = 59\%$



H Rui Zhang

LHC Seminar: Recent HH results and the combination

m<sub>HH</sub><sup>Truth</sup> [GeV]

# Summary

Rui Zhang

- HH is a unique process to probe the Higgs potential
- HH events are rare (33 fb  $\rightarrow$  ~ 4600 SM events in Run 2 dataset)
  - Call for highly efficient analyses
- ATLAS conducted searches in final states covering 50% of decays
  - Reached best expected sensitivity to date on HH cross section,  $\mu_{HH}$  < 2.9 (2.4 exp)
  - ... and on the Higgs self-coupling,  $-1.2 < \kappa_{\lambda} < 7.2$  ( $-1.6 < \kappa_{\lambda} < 7.2$  exp)
- Promising prospect for Run 3 and HL-LHC
  - Prospects can improve rapidly with the advancement of triggers, objects identifications, and analysis techniques

# Much to look forward to in the near future!



# Backup

### bbbb

- <u>Selection flowchart</u>
- <u>Cutflow, yields, efficiency</u>
- Discriminant
- <u>Resolved category yields, syst table</u>
- <u>Resolved uncertainty decomposition</u>
- k2V scan, XS scan, 2D scan

### bbyy

bbℓℓ+ET<sup>miss</sup>

- BDT variables
- <u>Discriminant</u>
- <u>All results</u>

- <u>Topology definition and BR</u>
- Prefit yields
- BDT and NN inputs

bbττ

- <u>Selection flowchart</u>
- BDT variables: ggF vs VBF, ggF, VBF
- <u>Discriminant</u>

Multilepton

- Event selection table
- <u>CR definitions</u>
- BDT input (all sub-channels)
- <u>Systematic table</u>

Combination

- EFT benchmark definition
- <u>Combine with single H</u>
- Projection scenarios definition

# **bbbb event selection**



🙌 Rui Zhang

# Cutflow

Boosted



### Resolved

|                                                      | Data                 | ggF Signal |                         | VBF  | Signal            |
|------------------------------------------------------|----------------------|------------|-------------------------|------|-------------------|
|                                                      |                      | SM         | $\kappa_{\lambda} = 10$ | SM   | $\kappa_{2V} = 0$ |
| Common preselection                                  |                      |            |                         |      |                   |
| Preselection                                         | $5.70 \times 10^{8}$ | 530        | 7300                    | 22   | 630               |
| Trigger class                                        | $2.49 \times 10^{8}$ | 380        | 5300                    | 16   | 410               |
| ggF selection                                        |                      |            |                         |      |                   |
| Fail VBF selection                                   | $2.46 \times 10^{8}$ | 380        | 5200                    | 14   | 330               |
| At least 4 <i>b</i> -tagged central jets             | $1.89 \times 10^{6}$ | 86         | 1000                    | 1.9  | 65                |
| $ \Delta \eta_{HH}  < 1.5$                           | $1.03 \times 10^{6}$ | 72         | 850                     | 0.94 | 46                |
| $X_{Wt} > 1.5$                                       | $7.51 \times 10^5$   | 60         | 570                     | 0.74 | 43                |
| $X_{HH} < 1.6$ (ggF signal region)                   | $1.62 \times 10^4$   | 29         | 180                     | 0.24 | 23                |
| VBF selection                                        |                      |            |                         |      |                   |
| Pass VBF selection                                   | $3.30 \times 10^{6}$ | 5.2        | 81                      | 2.2  | 71                |
| At least 4 <i>b</i> -tagged central jets             | $2.71 \times 10^4$   | 1.1        | 15                      | 0.74 | 28                |
| $X_{Wt} > 1.5$                                       | $2.18 \times 10^{4}$ | 1.0        | 11                      | 0.67 | 26                |
| $X_{HH} < 1.6$                                       | $5.02 \times 10^{2}$ | 0.48       | 3.1                     | 0.33 | 17                |
| $m_{HH} > 400 \text{GeV} (\text{VBF signal region})$ | $3.57 \times 10^2$   | 0.43       | 1.8                     | 0.30 | 16                |

### Boosted

| Selection                                          | Data         | Nonresonant<br>SM ggF | Nonresona | ant VBF $(\kappa_V) =$ | Spin-0 reso<br>Narrow-y | onant VBF width $m_{\rm X}$ |
|----------------------------------------------------|--------------|-----------------------|-----------|------------------------|-------------------------|-----------------------------|
|                                                    |              | 66-                   | (1,1,1)   | (1, 0, 1)              | 1.00 TeV                | 5.00 TeV                    |
| Raw events                                         | 16854036422  | 1480                  | 82.0      | 1290                   | 140                     | 140                         |
| Trigger & upstream selection                       | n 63 944 638 | 20.9                  | 1.15      | 235                    | 70.7                    | 126                         |
| $\geq 2 \text{ large-} R \text{ jets } (\eta, m)$  | 57 510 800   | 14.1                  | 0.531     | 168                    | 48.7                    | 119                         |
| Double <i>b</i> -tagging                           | 12875        | 5.35                  | 0.131     | 77.4                   | 25.2                    | 24.9                        |
| $\geq 2 \text{ small-} R \text{ jets}$             | 5762         | 2.24                  | 0.105     | 57.2                   | 18.8                    | 16.0                        |
| Large- <i>R</i> jets $(p_{\rm T})$                 | 3902         | 1.41                  | 0.0700    | 48.3                   | 13.7                    | 16.0                        |
| Small- <i>R</i> jets $(\Delta \eta(j, j), m_{ij})$ | 314          | 0.148                 | 0.0380    | 32.3                   | 8.58                    | 12.0                        |
| Signal region                                      | 23           | 0.0970                | 0.0290    | 24.5                   | 6.68                    | 6.59                        |
| Veto resolved selection                            | 21           | 0.0590                | 0.0200    | 18.8                   | -                       | -                           |

Rui Zhang

# bbbb discriminant

### Resolved



# bbbb tables

| Category                                        | Data | Expected        | ggF Signal | VBF Signal |
|-------------------------------------------------|------|-----------------|------------|------------|
|                                                 |      | Background      | SM         | SM         |
| ggF signal region                               |      |                 |            |            |
| $ \Delta \eta_{HH}  < 0.5, X_{HH} < 0.95$       | 1940 | $1935 \pm 25$   | 7.0        | 0.038      |
| $ \Delta \eta_{HH}  < 0.5, X_{HH} > 0.95$       | 3602 | $3618 \pm 37$   | 6.5        | 0.036      |
| $0.5 <  \Delta \eta_{HH}  < 1.0, X_{HH} < 0.95$ | 1924 | $1874 \pm 21$   | 5.1        | 0.037      |
| $0.5 <  \Delta \eta_{HH}  < 1.0, X_{HH} > 0.95$ | 3540 | $3492 \pm 35$   | 4.7        | 0.040      |
| $ \Delta \eta_{HH}  > 1.0, X_{HH} < 0.95$       | 1880 | $1739 \pm 22$   | 2.9        | 0.043      |
| $ \Delta \eta_{HH}  > 1.0,  X_{HH} > 0.95$      | 3285 | $3212 \pm 37$   | 2.8        | 0.041      |
| VBF signal region                               |      |                 |            |            |
| $ \Delta \eta_{HH}  < 1.5$                      | 116  | $125.3 \pm 4.4$ | 0.37       | 0.090      |
| $ \Delta \eta_{HH}  > 1.5$                      | 241  | $230.6 \pm 5.3$ | 0.06       | 0.21       |

| Source of Uncertainty                      | $\Delta \mu / \mu$ |  |  |  |  |
|--------------------------------------------|--------------------|--|--|--|--|
| Theory uncertainties                       |                    |  |  |  |  |
| Theory uncertainty in signal cross-section | -9.0%              |  |  |  |  |
| All other theory uncertainties             | -1.4%              |  |  |  |  |
| Background modeling uncertainties          |                    |  |  |  |  |
| Bootstrap uncertainty                      | -7.1%              |  |  |  |  |
| CR to SR extrapolation uncertainty         | -7.5%              |  |  |  |  |
| 3b1f nonclosure uncertainty                | -2.0%              |  |  |  |  |

# bbbb uncertainty



# bbbb other results



H Rui Zhang

# **bbtt event selection**



# **bbtt BDT variables**

ggF

VBF

|                                                                | $\tau_{hac}$        | $t^{\tau_{had}}$ | $	au_{ m lep}	au_{ m h}$ | ad SLT         | $\tau_{\rm lep} \tau_{\rm h}$ | ad LTT               | Variable                                                      |             |                |                 |
|----------------------------------------------------------------|---------------------|------------------|--------------------------|----------------|-------------------------------|----------------------|---------------------------------------------------------------|-------------|----------------|-----------------|
| Variable                                                       | low-m <sub>HH</sub> | high- $m_{HH}$   | low-m <sub>HH</sub>      | high- $m_{HH}$ | low-m <sub>HH</sub>           | high-m <sub>HH</sub> | Variable                                                      | • had • had | ·lep · had 5E1 | · lep · had ETT |
| <i>m</i> 1.1                                                   | 1                   | 1                | 1                        | 1              | 1                             | 1                    | тин                                                           | 1           | 1              | 1               |
| mMMC                                                           |                     |                  |                          | 1              |                               | 1                    |                                                               |             |                |                 |
| <i><i>πττ</i><br/><i>πττ</i></i>                               |                     |                  |                          | 1              |                               | 1                    |                                                               | ~           | V              | ~               |
|                                                                |                     |                  |                          |                |                               | ·                    | $m_{\tau\tau}^{\text{MMC}}$                                   | 1           | 1              | 1               |
| $\Delta R_{bb}$                                                | 1                   |                  |                          |                |                               | 1                    | $\Delta R_{hh}$                                               | 1           | 1              |                 |
| N(iets)                                                        |                     | •                | · ·                      | v              |                               | v                    | $A P(\tau_{1}, \tau_{1})$                                     | 1           | 1              |                 |
| $n_{\rm m}(HH)$                                                |                     | ·                | · ·                      |                |                               |                      | $\Delta \mathbf{K}(\tau_0, \tau_1)$                           | V           | V              |                 |
| $p_{\Gamma}(\Pi \Pi)$                                          | 1                   | v                | , i                      | 1              | 1                             |                      | VBF $\eta_0 \times \eta_1$                                    | 1           |                | 1               |
|                                                                |                     | /                | ,                        | •              |                               | ·                    | $\Delta \eta_{ii}^{\text{VBF}}$                               | 1           | 1              |                 |
|                                                                | 1                   | v                | , v                      | v              | •                             | •                    | A AVBF                                                        | /           |                |                 |
| r <sub>2</sub><br>Emiss                                        | ,                   | /                | ,                        |                | , v                           | v                    | $\Delta \varphi_{jj}$                                         | v           |                |                 |
| E <sup>miss</sup> controlity                                   |                     | v                | ř                        |                |                               |                      | $\Delta R_{ii}^{\text{VBF}}$                                  | 1           | 1              |                 |
| T centrality                                                   | ,                   |                  |                          |                |                               |                      | mVBF                                                          | ./          | ./             | 1               |
| WT2<br>wW                                                      |                     |                  |                          | 1              |                               |                      | m jj                                                          | v           | v              | v               |
| $m_T$                                                          |                     | /                | · ·                      | *              |                               |                      | N(jets)                                                       |             |                | 1               |
| $m_{\rm T}(\tau_1)$                                            |                     | V                |                          | *              |                               |                      | $H_{\mathrm{T}}$                                              |             | 1              |                 |
| $p_{\rm T}(\tau_0)$                                            |                     |                  |                          | *              |                               |                      | ST                                                            |             |                | 1               |
| $p_{\rm T}(t_1)$                                               |                     |                  | , v                      | •              |                               | ,                    | 51                                                            |             |                | •               |
| $p_{\rm T}(b_0)$                                               |                     |                  | , v                      | /              |                               | v                    | $T_2$                                                         |             |                | ~               |
| $p_{\rm T}(b_1)$                                               |                     |                  |                          | ~              |                               | ,                    | $m_T^W$                                                       |             |                | 1               |
| $p_{\rm T}(bb)$                                                |                     |                  |                          |                |                               |                      | $\lambda n \mu \mu$                                           |             | 1              |                 |
| $p_{\mathrm{T}}(\tau_{1})$                                     |                     |                  |                          |                |                               |                      | $-\eta \Pi \Pi$<br>$p_{-}(HH)$                                |             | -              | ,               |
| $\Delta p_{\rm T}(\tau_0, \tau_1)$                             |                     | /                |                          |                | · ·                           | v                    | $p_{\rm T}(HH)$                                               |             |                | v               |
| $\eta(\tau_0)$                                                 |                     | ·                |                          |                |                               |                      | $m^*_{HH}$                                                    |             |                |                 |
| $\eta(\tau_1)$                                                 | · ·                 | v                |                          |                | 1                             |                      | $m_{HH}$ scaled                                               |             |                | 1               |
| $\Delta \eta(i_0, i_1)$<br>$\Delta \phi(bb \ E^{\text{miss}})$ | 1                   | 1                |                          |                |                               |                      | $p_{T}(\tau_0)$                                               |             |                | 1               |
| $\Delta \phi(bb, E_{\rm T})$                                   | 1                   | ·                |                          |                |                               |                      | $P_1(0)$                                                      |             |                |                 |
| $\Delta \phi(\sigma \tau, T^{\text{miss}})$                    |                     | v                | 1                        | 1              | 1                             |                      | $p_{\rm T}(\tau \tau)$                                        |             |                | v               |
| $\Delta \phi(\tau_1, E_T)$                                     |                     |                  |                          | ·              |                               |                      | $p_{\mathrm{T}}(b_0)$                                         |             |                | 1               |
| $\Delta \varphi(r_1, L_T)$<br>DL 1r quantile( $h_0$ )          | 1                   | 1                |                          | 1              |                               | ·                    | $\eta(\tau_0)$                                                | 1           |                |                 |
| DL1r quantile $(b_1)$                                          |                     |                  |                          | 1              |                               |                      | $n(\tau_1)$                                                   | ./          |                |                 |
| $\Delta R(h_0, \tau_0)$                                        |                     |                  | 1                        | ·              |                               |                      | $\eta(l)$                                                     | v           |                | ,               |
| $\Delta R(b_1, \tau_1)$                                        |                     | 1                | 1                        |                |                               |                      | $\Delta R(b_0, \tau_0)$                                       |             |                | <i>•</i>        |
| $\Delta R(b_1, \tau_0)$                                        |                     |                  | 1                        | 1              |                               |                      | Thrust <sup>a</sup>                                           | 1           |                |                 |
| $m_{c}^{c}$                                                    | 1                   |                  |                          |                |                               |                      | Circularity <sup>a</sup>                                      | 1           |                |                 |
| m <sup>b</sup> -                                               |                     |                  |                          |                |                               | 1                    | Planar Flow $a$                                               |             | /              |                 |
| $m(b_0\tau_0)$                                                 |                     |                  |                          |                |                               | 1                    |                                                               |             | •              |                 |
| $m(b_1\tau_0)$                                                 |                     |                  |                          |                |                               | 1                    | $f_0^{\mu}$                                                   |             | 1              |                 |
| <i>m</i> *                                                     | 1                   |                  |                          |                |                               | 1                    | $f_2^a$                                                       |             | 1              |                 |
| mscaled                                                        |                     |                  |                          |                |                               | 1                    | $\tilde{f_a}$                                                 |             | 1              |                 |
| $C^b$                                                          | 1                   | 1                |                          |                |                               | -                    | <sup>5</sup> 4                                                |             |                |                 |
| Sphericity <sup>b</sup>                                        | 1                   | 1                |                          |                |                               |                      | m <sub>Eff</sub>                                              |             | <i>v</i>       |                 |
| Planar flow <sup><math>b</math></sup>                          |                     | 1                |                          |                |                               |                      | $\cos 	heta^*$                                                |             |                | 1               |
| $\cos(\Delta \theta_{LL}^{H \to b\bar{b}} \text{ rest frame})$ |                     |                  | ~                        | 1              |                               |                      | $\cos(\Delta\theta_{\tau\tau}^{H\to\tau\tau \ rest \ frame})$ |             |                | 1               |
| DD /                                                           |                     |                  |                          |                |                               |                      |                                                               |             |                |                 |

### ggF vs VBF

| Variable                    | $	au_{ m had}	au_{ m had}$ | $	au_{ m lep}	au_{ m had}~ m SLT$ | $	au_{ m lep}	au_{ m had}$ LTT |
|-----------------------------|----------------------------|-----------------------------------|--------------------------------|
| $m_{jj}^{\rm VBF}$          | $\checkmark$               | 1                                 | 1                              |
| $\Delta\eta_{jj}^{ m VBF}$  | 1                          | $\checkmark$                      | 1                              |
| VBF $\eta_0 \times \eta_1$  | 1                          | 1                                 |                                |
| $\Delta \phi^{ m VBF}_{jj}$ | 1                          |                                   |                                |
| $\Delta R_{jj}^{\rm VBF}$   |                            | 1                                 | 1                              |
| $\Delta R_{\tau\tau}$       | 1                          |                                   |                                |
| $m_{HH}$                    | 1                          |                                   |                                |
| $f_2^a$                     | 1                          |                                   |                                |
| $C^{a}$                     |                            | 1                                 | 1                              |
| $m^a_{ m Eff}$              |                            | 1                                 | 1                              |
| $f_0^c$                     |                            | 1                                 |                                |
| $f_0^a$                     |                            |                                   | 1                              |
| $h_3^a$                     |                            |                                   | 1                              |

# bbtt 9 BDTs



Rui Zhang

# **bbyy BDT training variables**

| Variable                                                   | Definition                                                                                                    |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Photon candidates                                          |                                                                                                               |
| $p_{\rm T}/m_{\gamma\gamma}$                               | Transverse momentum of each photon divided by the diphoton invariant mass $m_{\gamma\gamma}$                  |
| $\eta$ and $\phi$                                          | Pseudorapidity and azimuthal angle of each photons                                                            |
| $\Delta R(\gamma_1,\gamma_2)$                              | Angular distance between the two photons                                                                      |
| <i>b</i> -jet candidates                                   |                                                                                                               |
| <i>b</i> -tag status                                       | Tightest fixed <i>b</i> -tag working point (60%, 70%, 77%) that each jet passes                               |
| $p_{\rm T}, \eta \text{ and } \phi$                        | Transverse momentum, pseudorapidity and azimuthal angle of each jet                                           |
| $p_{\rm T}^{bar{b}}$ , $\eta_{bar{b}}$ and $\phi_{bar{b}}$ | Transverse momentum, pseudorapidity and azimuthal angle of the two-b-jet system                               |
| $\Delta R(b_1, b_2)$                                       | Angular distance between the two candidate <i>b</i> -jets                                                     |
| $m_{b\bar{b}}$                                             | Invariant mass of the two candidate <i>b</i> -jets                                                            |
| Single topness                                             | Variable used to identify $t \to Wb \to q\bar{q}'b$ decays. For the definition, see Eq.(1).                   |
| Other jets (only first two, if present, ranked by          | discrete <i>b</i> -tagging score)                                                                             |
| <i>b</i> -tag status                                       | Tightest fixed <i>b</i> -tag working point (85% or none) that each jet passes                                 |
| $p_{\mathrm{T}}, \eta \text{ and } \phi$                   | Transverse momentum, pseudorapidity and azimuthal angle of each jet                                           |
| VBF-jet candidates                                         |                                                                                                               |
| $\Delta \eta(j_1, j_2), m_{jj}$                            | Pseudorapidity difference and invariant mass of the two jets                                                  |
| Event-level variables                                      |                                                                                                               |
| Transverse sphericity, planar flow, $p_{\rm T}$ balance    | For the definitions, see Ref. [83], Ref. [84], and Eq. (2)                                                    |
| $H_{\mathrm{T}}$                                           | Scalar sum of the $p_{\rm T}$ of the jets in the event                                                        |
| $E_{\rm T}^{\rm miss}$ and $\phi^{ m miss}$                | Missing transverse momentum and its azimuthal angle                                                           |
| m*                                                         | The 4-body invariant mass of the two photons and two candidate <i>b</i> -jets, $m_{b\bar{b}\gamma\gamma}^* =$ |
| $m_{b\bar{b}\gamma\gamma}$                                 | $m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$          |

H Rui Zhang

# bbyy discriminant



# **bbyy other results**



💾 Rui Zhang

# **bbyy other results**





LHC Seminar: Recent HH results and the combination

ATLAS

Observed 68% CL Expected 68% CL

 $1.0^{+5.9}_{-2.4}$ 

 $3.4^{+2.4}_{-2.9}$ 

 $0.00^{+0.46}_{-0.36}$ 

 $0.04^{+0.25}_{-0.24}$ 

0.00+0.71

 $0.22^{+0.28}_{-0.27}$ 

0.0<sup>+5.3</sup>

-5.1+6.2

0.0+9.2

0.8+5.1

20

# bbll+ET<sup>miss</sup> targeted processes



bbμμ

## **bb***ll***+E**<sup>miss</sup> **prefit yields**

| Process                                    | ggF-SR              | VBF-SR              | tī-CR                   | Wt-CR                     | Z+HF-CR               |  |  |  |
|--------------------------------------------|---------------------|---------------------|-------------------------|---------------------------|-----------------------|--|--|--|
| SM background                              |                     |                     |                         |                           |                       |  |  |  |
| $t\bar{t}$                                 | $561220 \pm 150$    | $52670 \pm 50$      | $436840 \pm 130$        | $2270 \pm 10$             | $34700 \pm 40$        |  |  |  |
| $t\bar{t} + V$                             | $1121 \pm 4$        | $194.7 \pm 1.9$     | $1133 \pm 5$            | $97.0 \pm 1.1$            | $440.1 \pm 1.9$       |  |  |  |
| Single top $(Wt)$                          | $16260 \pm 50$      | $1165 \pm 12$       | $14100 \pm 40$          | $2901 \pm 20$             | $1237 \pm 13$         |  |  |  |
| Single top (s/t-channel)                   | $12.7 \pm 0.8$      | $2.48 \pm 0.35$     | $1.21 \pm 0.28$         | $0.35 \pm 0.14$           | $0.25 \pm 0.11$       |  |  |  |
| $Z \rightarrow \ell \ell \ (\mathrm{HF})$  | $16090 \pm 180$     | $1178 \pm 34$       | $3610 \pm 70$           | $525 \pm 11$              | $43390 \pm 260$       |  |  |  |
| $Z \rightarrow \ell \ell \ (\mathrm{LF})$  | $2720 \pm 170$      | $260 \pm 40$        | $600 \pm 90$            | $55 \pm 8$                | $5470 \pm 190$        |  |  |  |
| $Z \rightarrow \tau \tau \; (\mathrm{HF})$ | $2200 \pm 40$       | $154 \pm 13$        | $3 \pm 7$               | $1.9 \pm 0.5$             | $4\pm 6$              |  |  |  |
| $Z \rightarrow \tau \tau \; (\text{LF})$   | $370 \pm 50$        | $24 \pm 4$          | $-1.3 \pm 1.5$          | $0.11 \pm 0.06$           | $0.8 \pm 0.5$         |  |  |  |
| W+jets                                     | $0.7 \pm 0.5$       | $0.09\pm0.08$       | $-0.2 \pm 0.4$          |                           |                       |  |  |  |
| Diboson                                    | $288 \pm 4$         | $32.6 \pm 0.8$      | $159.0 \pm 2.8$         | $39.0 \pm 0.9$            | $226.8 \pm 3.3$       |  |  |  |
| Single Higgs                               | $601.0 \pm 1.1$     | $105.1\pm0.4$       | $336.5\pm0.5$           | $22.06 \pm 0.12$          | $48.28 \pm 0.29$      |  |  |  |
| Fakes                                      | $18510 \pm 170$     | $2390 \pm 60$       | $10020 \pm 140$         | $529 \pm 35$              | $1360 \pm 50$         |  |  |  |
| Total SM bkg.                              | $619390 \pm 350$    | $58170 \pm 100$     | $466810 \pm 230$        | $6440 \pm 40$             | $86890 \pm 330$       |  |  |  |
|                                            |                     | HH                  | signal, ggF             |                           |                       |  |  |  |
| $ggF HH \rightarrow bbWW$                  | $8.318 \pm 0.016$   | $0.857 \pm 0.005$   | $0.00113 \pm 0.00019$   | $0.00033 \pm 0.00010$     | $0.0014 \pm 0.0002$   |  |  |  |
| ggF $HH \rightarrow bb\tau\tau$            | $3.138 \pm 0.009$   | $0.3284 \pm 0.0029$ | $0.00332 \pm 0.00029$   | $0.00068 \pm 0.00015$     | $0.0047 \pm 0.0004$   |  |  |  |
| $ggF HH \rightarrow bbZZ$                  | $0.633 \pm 0.005$   | $0.0873 \pm 0.0018$ | $0.00083 \pm 0.00018$   | $0.00020 \pm 0.00009$     | $0.0442 \pm 0.0013$   |  |  |  |
| $\sum$ ggF HH                              | $12.088\pm0.019$    | $1.272\pm0.006$     | $0.0053 \pm 0.0004$     | $0.00121 \pm 0.00020$     | $0.0504 \pm 0.0014$   |  |  |  |
|                                            |                     | НН                  | signal, VBF             |                           |                       |  |  |  |
| $VBF HH \rightarrow bbWW$                  | $0.1518 \pm 0.0014$ | $0.2138 \pm 0.0017$ | $0.00013 \pm 0.00004$   |                           | $0.00009 \pm 0.00004$ |  |  |  |
| $VBF HH \rightarrow bb\tau\tau$            | $0.0537 \pm 0.0006$ | $0.0769 \pm 0.0007$ | $0.000086 \pm 0.000022$ | $0.000048 \pm 0.000018$   | $0.00024 \pm 0.00004$ |  |  |  |
| $VBF HH \rightarrow bbZZ$                  | $0.0097 \pm 0.0004$ | $0.0184 \pm 0.0006$ | $0.000040 \pm 0.000024$ | $0.0000029 \pm 0.0000016$ | $0.00236 \pm 0.00023$ |  |  |  |
| $\sum$ VBF <i>HH</i>                       | $0.2152 \pm 0.0016$ | $0.3091 \pm 0.0019$ | $0.00026 \pm 0.00005$   | $0.000051 \pm 0.000018$   | $0.00269 \pm 0.00024$ |  |  |  |
|                                            |                     | HH sig              | nal, ggF+VBF            |                           |                       |  |  |  |
| $\sum$ ggF+VBF <i>HH</i>                   | $12.303 \pm 0.019$  | $1.582 \pm 0.006$   | $0.0055 \pm 0.0004$     | $0.00126 \pm 0.00020$     | $0.0531 \pm 0.0014$   |  |  |  |

Rui Zhang

# **bb***ll***+E**<sup>miss</sup> **MVA** inputs

| Input feature                                        | Description                                                                                              |          |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|
| same flavour                                         | unity if final state leptons are <i>ee</i> or $\mu\mu$ , zero otherwise                                  |          |
| $p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{b}$          | transverse momenta of the leptons, b-tagged jets                                                         |          |
| $m_{\ell\ell}, p_{\rm T}^{\ell\ell}$                 | invariant mass and the transverse momentum of the di-lepton system                                       |          |
| $m_{bb}, p_{\mathrm{T}}^{bb}$                        | invariant mass and the transverse momentum of the $b$ -tagged jet pair system                            |          |
| $m_{T2}^{bb}$                                        | stransverse mass of the two <i>b</i> -tagged jets [125, 126]                                             | aaF NN   |
| $\Delta R_{\ell\ell}, \Delta R_{bb}$                 | $\Delta R$ between the two leptons and two <i>b</i> -tagged jets                                         | 99' '''' |
| $m_{b\ell}$                                          | $\min\{\max(m_{b_0\ell_0}, m_{b_1\ell_1}), \max(m_{b_0\ell_1}, m_{b_1\ell_0})\} [54]$                    |          |
| $\min \Delta R_{b\ell}$                              | minimum $\Delta R$ of all <i>b</i> -tagged jet and lepton combinations                                   |          |
| $m_{bb\ell\ell}$                                     | invariant mass of the $bb\ell\ell$ system                                                                |          |
| $E_{\rm T}^{\rm miss}$ , $E_{\rm T}^{\rm miss}$ -sig | missing transverse energy and its significance [127]                                                     |          |
| $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$            | transverse mass of the $p_{\rm T}$ -leading lepton with respect to $E_{\rm T}^{\rm miss}$                |          |
| $\min m_{\mathrm{T},\ell}$                           | minimum value of $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$ |          |
| $H_{\mathrm{T2}}^{\mathrm{R}}$                       | measure for boostedness <sup>6</sup> of the two Higgs bosons                                             |          |
|                                                      |                                                                                                          |          |

Rui Zhang

| 99 |  | IN |
|----|--|----|
|    |  |    |
|    |  |    |
|    |  |    |

|             | Input feature                                                                                                                 | Description                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|             | $\eta_{\ell_0},\eta_{\ell_1},\phi_{\ell_0},\phi_{\ell_1},p_{\mathrm{T}}^{\ell_0},p_{\mathrm{T}}^{\ell_1}$                     | $\eta, \phi, p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading lepton                                         |
|             | $\eta_{b_0}, \eta_{b_1}, \phi_{b_0}, \phi_{b_1}, p_{\mathrm{T}}^{b_0}, p_{\mathrm{T}}^{b_1}$                                  | $\eta$ , $\phi$ , $p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading <i>b</i> -tagged jet                     |
|             | $\eta_{j_0}, \eta_{j_1}, \phi_{j_0}, \phi_{j_1}, p_{\mathrm{T}}^{j_0}, p_{\mathrm{T}}^{j_1}$                                  | $\phi$ , $\eta$ , $p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading non <i>b</i> -tagged jet                 |
|             | $E_{\rm T}^{\rm miss}, \phi^{E_{\rm T}^{\rm miss}}, E_{\rm T}^{\rm miss}$ -sig                                                | missing transverse energy, its $\phi$ and significance [127]                                            |
|             | $p_{\rm T}^{bb}, \Delta R_{bb}, \Delta \phi_{bb}, m_{bb}$                                                                     | $p_{\rm T}$ , $\Delta R$ , $\Delta \phi$ and invariant mass of di- <i>b</i> -jet system                 |
|             | $p_{\mathrm{T}}^{\ell\ell}, \Delta R_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\ell\ell}, \phi_{\mathrm{centrality}}^{\ell\ell}$ | $p_{\rm T}$ , $\Delta R$ , $\Delta \phi$ , $p_{\rm T}$ and centrality <sup>7</sup> of di-leptons system |
|             | $p_{\mathrm{T}}^{bb\ell\ell}, m_{bb\ell\ell}$                                                                                 | $p_{\rm T}$ and invariant mass of the $bb\ell\ell$ system                                               |
|             | $p_{\mathrm{T}}^{bb\ell\ell+E_{\mathrm{T}}^{\mathrm{miss}}}, m_{bb\ell\ell+E_{\mathrm{T}}^{\mathrm{miss}}}$                   | $p_{\rm T}$ and invariant mass of $bb\ell\ell + E_{\rm T}^{\rm miss}$ system                            |
|             | $m_{\ell\ell+E_r^{ m miss}}$                                                                                                  | invariant mass of di-lepton + $E_{\rm T}^{\rm miss}$ system                                             |
| VBE BDT     | $p_{\mathrm{T}}^{E_{\mathrm{T}}^{\mathrm{miss}}+\ell\ell},\Delta\phi_{E_{\mathrm{T}}^{\mathrm{miss}},\ell\ell}$               | $p_{\rm T}$ of and $\Delta \phi$ between $E_{\rm T}^{\rm miss}$ and di-lepton system                    |
|             | $p_{\rm T}^{\rm tot}$                                                                                                         | $p_{\rm T}$ of $bb\ell\ell + E_{\rm T}^{\rm miss} + p_{\rm T}$ -leading and -sub-leading jet            |
|             | m <sub>tot</sub>                                                                                                              | invariant mass of $bb\ell\ell + E_T^{\text{miss}} + p_T$ -leading and -sub-leading jet                  |
|             | $m_t^{\mathrm{KLF}}$                                                                                                          | Kalman fitter top-quark mass [129]                                                                      |
|             | $\min \Delta R_{\ell_0 j}, \min \Delta R_{\ell_1 j}$                                                                          | minimum $\Delta R$ between $p_{T}$ -(sub)leading $\ell$ -j couples                                      |
|             | $\sum m_{\ell j}$                                                                                                             | sum of the invariant masses of all $\ell$ +jet combinations                                             |
|             | $\max p_{\rm T}^{jj}, \max m_{jj}$                                                                                            | maximum $p_{\rm T}$ and invariant mass of any two non <i>b</i> -tagged jets                             |
|             | $\max \Delta \eta_{jj}, \max \Delta \phi_{jj}$                                                                                | maximum $\Delta \eta$ and $\Delta \phi$ between any two non <i>b</i> -tagged jets                       |
|             | $\min \Delta R_{b\ell}$                                                                                                       | minimum $\Delta R$ of all <i>b</i> -tagged jet and lepton combinations                                  |
|             | $N_{\text{forward jets}}, N_j$                                                                                                | number of forward jets, number of non <i>b</i> -tagged jets                                             |
|             | $m_{\mathrm{T2}}^{bb}$                                                                                                        | stransverse mass of the two <i>b</i> -tagged jets [125, 126]                                            |
| I UC Somino | $m_{\rm coll}$                                                                                                                | collinear mass (reconstruction of $m_{\tau\tau}$ ) [130]                                                |
| LIL JEIIIIA | m <sub>MMC</sub>                                                                                                              | value of the MMC algorithm (reconstruction of $m_{\tau\tau}$ ) [130]                                    |

70

# **Multilepton selections**

| Channel           | l                                                                                                                                                                                                                                                                                                                     | $	au_{	ext{had-vis}}$                                         | Jets                   | <i>b</i> -jets          |                                  |                                                                      |                          |                                                                                                                                                                                          |                                                                                |                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------|-------------------------|----------------------------------|----------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|
| 4 <i>ℓ+bb</i>     | $4\ell(B)$ $p_{T}(\ell_{1}) > 20 \text{ GeV}$ $p_{T}(\ell_{2}) > 15 \text{ GeV}$ $p_{T}(\ell_{3}) > 10 \text{ GeV}$ $\ell_{3} \text{ or } \ell_{4} \text{ pass loose PLV}$ $2 \text{ SFOC pairs}$ $50 < m_{\text{lead}-\ell\ell}^{SFOC} < 106 \text{ GeV}$ $5 < m_{\text{sublead}-\ell\ell}^{SFOC} < 115 \text{ GeV}$ | $N_{\tau}=0$                                                  | N <sub>jet</sub> ≥ 2   | $1 \le N_{b-jet} \le 3$ | Channel                          | / <i>l</i>                                                           | $	au_{had-vis}$          | Photons                                                                                                                                                                                  | $E_{	ext{T}}^{	ext{miss}}$                                                     | <i>b</i> -jets         |
|                   | All pairs $\Delta R(\ell_i, \ell_j) > 0.02$<br>115 GeV < $m_{4\ell}$ < 135 GeV                                                                                                                                                                                                                                        |                                                               |                        |                         | $\gamma\gamma$ +2( $\ell,\tau$ ) | $N_{\ell}(\mathbf{P}) + m_{\ell}(\mathbf{r}) > N_{\ell}(\mathbf{P})$ | $N_{\tau} = 2$<br>12 GeV | $N_{\gamma} = 2$<br>$E_{\pi}(\gamma_{f}) > 35 \text{ GeV}$                                                                                                                               | $E_{\rm T}^{\rm miss} > 35 {\rm GeV}$                                          | $N_{b-\text{jet}} = 0$ |
| 3ℓ                | $3\ell$ , sum of charges = $\pm 1$<br>$\ell_{OC}(L)$<br>$\ell_{SC1}(T), p_T > 15 \text{ GeV}$                                                                                                                                                                                                                         | $N_{	au} = 0$                                                 | $N_{\rm jet} \ge 1$    | $N_{b-jet} = 0$         |                                  | $m_{2(\ell,\tau)} > 12 \text{ GeV}$                                  |                          | $105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$ $\gamma_1 : p_T/m_{\gamma\gamma} > 0.35$ $\gamma_2 : p_T/m_{\gamma\gamma} > 0.25$                                                 |                                                                                |                        |
|                   | $\begin{aligned} \ell_{SC2}(T), p_T > 15 \text{ GeV} \\ \text{All } m_{\ell\ell}^{SFOC} > 12 \text{ GeV} \\ Z \text{-veto} \\  m_{3\ell} - m_Z  > 10 \text{ GeV} \end{aligned}$                                                                                                                                       |                                                               |                        |                         | γγ+ℓ                             |                                                                      | $N_{\tau}=0$             | $N_{\gamma} = 2$<br>$E_{\rm T}(\gamma_1) > 35 \text{GeV}$<br>$105 \text{GeV} < m_{\gamma\gamma} < 160 \text{GeV}$<br>$\gamma_1 : p_{\rm T}/m_{\gamma\gamma} > 0.35$                      | $\gamma\gamma+e: E_{\rm T}^{\rm miss} > 35 {\rm GeV}$<br>$\gamma\gamma+\mu: -$ | N <sub>b-jet</sub> = 0 |
| 2ℓSC              | $2\ell(T), p_T > 20 \text{ GeV}, \text{SC}$<br>$m_{\ell\ell} > 12 \text{ GeV}$                                                                                                                                                                                                                                        | $N_{\tau}=0$                                                  | $N_{\text{jet}} \ge 2$ | $N_{b-jet} = 0$         |                                  | N 0                                                                  | N – 1                    | $\gamma_2: p_T/m_{\gamma\gamma} > 0.25$ $N_{\gamma} = 2$ $E_T(\gamma_1) > 35 \text{ GeV}$ $105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$ $\gamma_1: p_T/m_{\gamma\gamma} > 0.35$ | $E_{\rm T}^{\rm miss}$ > 35 GeV                                                | N <sub>b-jet</sub> = 0 |
| $2\ell SC + \tau$ | $2\ell(T), p_T > 20 \text{ GeV}, \text{SC}$<br>$m_{\ell\ell} > 12 \text{ GeV}$                                                                                                                                                                                                                                        | $N_{\tau} = 1$<br>$p_{\rm T} > 25  {\rm GeV}$<br>OC to $\ell$ | $N_{\text{jet}} \ge 2$ | $N_{b-\text{jet}} = 0$  | y y + t                          | $N_{\ell}(P) = 0$                                                    | $IV_T - I$               |                                                                                                                                                                                          |                                                                                |                        |
| 2ℓ+2τ             | $2\ell$ (L), OC<br>$m_{\ell\ell} > 12 \text{ GeV}$<br>Z-veto                                                                                                                                                                                                                                                          | $N_{\tau} = 2, \text{ OC}$ $\Delta R(\tau_1, \tau_2) < 2$     | -                      | $N_{b-\text{jet}} = 0$  |                                  |                                                                      |                          | $\gamma_2: p_{\rm T}/m_{\gamma\gamma} > 0.25$                                                                                                                                            |                                                                                |                        |
| $\ell$ +2 $\tau$  | 1ℓ(L)                                                                                                                                                                                                                                                                                                                 | $N_{\tau} = 2, \text{ OC}$ $\Delta R(\tau_1, \tau_2) < 2$     | $N_{\text{jet}} \ge 2$ | $N_{b-\text{jet}} = 0$  |                                  |                                                                      |                          |                                                                                                                                                                                          |                                                                                |                        |



# **Multilepton CR definitions**

| Channel        | Region                                  | Leptons                                                                        | Jets                         | <i>b</i> -jets            | Additional selections                 |                  |                               |                          |                                                                                |                        |                        |                       |
|----------------|-----------------------------------------|--------------------------------------------------------------------------------|------------------------------|---------------------------|---------------------------------------|------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------|------------------------|------------------------|-----------------------|
| $4\ell$ + $bb$ | $t\bar{t}$ CR*                          | Off-shell- $\ell\ell$ not SFOC<br>Z-veto                                       | -                            | -                         | -                                     |                  |                               |                          |                                                                                |                        |                        |                       |
|                | $t\bar{t}Z$ CR*                         | Off-shell- $\ell\ell$ not SFOC<br>All $\ell$ pass loose PLV                    | -                            | -                         | -                                     | Channel          | Region                        | Leptons                  | $(anti-)\tau_{had-vis}$                                                        | Jets                   | <i>b</i> -jets         | Additional selections |
|                |                                         | Z-req.                                                                         |                              |                           |                                       | $2\ell SC+\tau$  | VV CR*                        | -                        | -                                                                              | -                      | -                      | BDT < -0.2            |
|                | VV HCR*                                 | All $\ell$ pass loose PI V                                                     |                              | $N_{L} \cdot \cdot = 0$   | -                                     |                  | HF- <i>e</i> CR1*             | $\ell(T)e(T)$ , no PLV   | -                                                                              | $N_{\text{jet}} \ge 2$ | $N_{b-\text{jet}} = 1$ | -                     |
|                | Z+iets CR*                              | $n_{\rm T}(\ell_2) < 10 {\rm GeV}$                                             |                              | $r_{b-jet} = 0$           | _                                     |                  | HF- <i>e</i> CR2 <sup>★</sup> | $\ell(T)e(T)$ , no PLV   | -                                                                              | $N_{jet} \ge 2$        | $N_{b-jet} \ge 2$      | -                     |
|                |                                         | $p_{\mathrm{T}}(\ell_A) < 10 \mathrm{GeV}$                                     |                              |                           |                                       |                  | HF- $\mu$ CR*                 | $\ell(T)\mu(T)$ , no PLV | -                                                                              | -                      | -                      | -                     |
|                |                                         | Z-req.                                                                         |                              |                           | -                                     |                  | Fake- $\tau_{had-vis}$ CR     | OC leptons               | -                                                                              | -                      | -                      | -                     |
|                | VR                                      | -                                                                              | -                            | -                         | $ m_{A\ell} - m_H  > 10 \text{ GeV}$  |                  |                               | Z-veto                   |                                                                                |                        |                        |                       |
| •              |                                         |                                                                                |                              |                           |                                       |                  | Z+jets VR                     | OC leptons               | -                                                                              | -                      | -                      | -                     |
| 3ℓ             | WZ CR                                   | Z-req.                                                                         | -                            | -                         | $E_{\rm T}^{\rm mass} > 30 {\rm GeV}$ |                  |                               | Z-req.                   |                                                                                |                        |                        |                       |
|                | HF-e CR*                                | $\ell_{SC1}, \ell_{SC2}$ both <i>e</i><br>No PLV on any $\ell$                 | $N_{\text{jet}} \ge 2$       | $N_{b-jet} \ge 2$         |                                       |                  | tī VR                         | OC leptons<br>Z-veto     | -                                                                              | $N_{\rm jet} = 2$      | $N_{b-jet} = 1$        | -                     |
|                | $HF-\mu CR^*$                           | $\ell_{\rm SC1}, \ell_{\rm SC2}$ both $\mu$<br>No PLV on any $\ell$            | $N_{\text{jet}} \ge 2$       | $N_{b-jet} \ge 2$         |                                       |                  | VR                            | -                        | -                                                                              | $N_{\rm jet} < 2$      | -                      |                       |
|                | Mat. conv. CR*                          | $ m_{3\ell} - m_Z  < 10 \text{GeV}$ $r_{\text{vitr}} > 20 \text{mm}$           | -                            | -                         | -                                     | $2\ell+2\tau$    | Fake- $\tau_{had-vis}$ CR     | -                        | $N_{\tau} = 1$ and $N_{\text{anti-}\tau} = 1$<br>or $N_{\text{anti-}\tau} = 2$ |                        | -                      | -                     |
|                |                                         | $0 < m_{trk}$ tek < 100 MeV                                                    |                              |                           |                                       |                  | Z+jets CR                     | Z-req.                   | $N_{\tau} \ge 1$ or $N_{\text{anti-}\tau} \ge 1$                               | -                      | -                      | -                     |
|                | VR                                      | -                                                                              | -                            | -                         | BDT < 0.55                            |                  |                               |                          |                                                                                |                        |                        |                       |
| 2ℓSC           | WZ CR*                                  | $  \geq 3\ell(T), p_T > 20 \text{ GeV}$                                        | -                            | -                         | $E_{\rm T}^{\rm miss} > 30 {\rm GeV}$ |                  | tī VR                         | -                        | $N_{\tau} \ge 1$ or $N_{\text{anti-}\tau} \ge 1$                               | -                      | $N_{b-jet} = 1$        | -                     |
|                |                                         | One SFOC pair<br>Z-req.                                                        |                              |                           | -                                     |                  | VR                            | -                        | SC $	au_{had-vis}$                                                             | -                      | -                      | -                     |
|                |                                         | $m_{\ell\ell}$ (any pair) > 12 GeV<br>$ m_{2\ell} - m_{7}  > 10$ GeV           |                              |                           |                                       | $\ell$ +2 $\tau$ | Fake- $\tau_{had-vis}$ CR     | -                        | $N_{\tau} = 1$ and $N_{\text{anti-}\tau} = 1$<br>or $N_{\text{anti-}\tau} = 2$ |                        | -                      | -                     |
|                | VVii CR*                                | Z-veto (SESC pair)                                                             | $m_{\rm H} > 300  {\rm GeV}$ | -                         | BDT < -0.4                            |                  | Z+jets CR                     | $2\ell(T), OC$           | $N_{\tau} \ge 1$ or $N_{\text{anti-}\tau} \ge 1$                               | -                      | -                      | -                     |
|                | , , ,,,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                                |                              |                           | $BDT_{V \perp iets} > -0.8$           |                  |                               | Z-req.                   |                                                                                |                        |                        |                       |
|                | $HF-e CR1^*$                            | $\ell(T)e(T)$ , no PLV                                                         | $2 < N_{\text{iet}} < 3$     | $N_{h_{\text{-iet}}} = 1$ |                                       |                  | $t\bar{t}$ VR                 | $2\ell(T), OC$           | $N_{\tau} \ge 1$ or $N_{\text{anti-}\tau} \ge 1$                               | -                      | $N_{b-\text{jet}} = 1$ | -                     |
|                | HF- <i>e</i> CR2*                       | $\ell(T)e(T)$ , no PLV                                                         | $2 \le N_{\text{iet}} \le 3$ | $N_{h-\text{iet}} \ge 2$  | -                                     |                  |                               | Z-veto                   |                                                                                |                        | 5                      |                       |
|                | $HF-\mu CR^*$                           | $\ell(T)\mu(T)$ , no PLV                                                       | $2 \le N_{\text{iet}} \le 3$ | $N_{h-\text{iet}} \ge 1$  | -                                     |                  | VR                            | -                        | SC $\tau_{had-vis}$                                                            | -                      | -                      | -                     |
|                | Mat. conv. CR*                          | $r_{\rm vtx} > 20 \rm mm$                                                      | -                            | -                         | -                                     |                  |                               |                          |                                                                                |                        |                        |                       |
|                | Int. conv. CR*                          | $\frac{r_{\rm vtx}}{r_{\rm vtx}} < 20 \rm mm$ $m_{\rm trk, trk} < 100 \rm MeV$ | -                            | -                         | -                                     |                  |                               |                          |                                                                                |                        |                        |                       |
|                | Q mis-ID                                | 2e(T), OC or SC                                                                | $N_{\rm iet} < 2$            | -                         | -                                     |                  |                               |                          |                                                                                |                        |                        |                       |
|                | VR                                      | -                                                                              | -                            | -                         | BDT < -0.4                            |                  |                               |                          |                                                                                |                        |                        |                       |
# **Multilepton BDT inputs**

|                                                                |                                                                             |                |              |                 | Variable                                                                  | Description                                                                     | $2\ell SC+\tau$       | $2\ell + 2\tau$            | $\ell$ +2 $\tau$ |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|--------------|-----------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|----------------------------|------------------|
|                                                                |                                                                             |                |              |                 | Dilepton type                                                             | $\mu\mu = 1, e\mu/\mu e = 2, ee = 3$                                            | -                     | 1                          | -                |
|                                                                |                                                                             |                |              |                 | $m_{\ell_i,\ell_j}$                                                       | Invariant mass of the <i>i</i> th and <i>j</i> th leptons                       | -                     | i, j = 1, 2                | -                |
| Variable                                                       | Description                                                                 | Alibb          | 21           | 2/50            | $m_{\ell_i, \text{close-jet}}$                                            | Invariant mass of the <i>i</i> th lepton and its closest jet                    | <i>i</i> = 1          | -                          | <i>i</i> = 1     |
| variable                                                       | Description                                                                 | 41+00          | 51           | 21.50           | $m_{\ell_i j_j}$                                                          | Invariant mass of the <i>i</i> th lepton and <i>j</i> th jet                    | i, j = 1, 1           | -                          | -                |
| $p_{\mathrm{T}}(\ell_i)$                                       | $p_{\rm T}$ of the <i>i</i> th lepton                                       | i = 1, 2, 3, 4 | -            | -               |                                                                           |                                                                                 | i, j = 1, 2           |                            |                  |
| $\eta(\ell_i)$                                                 | $\eta$ of the <i>i</i> th lepton                                            | i = 1, 2, 3, 4 | -            | <i>i</i> = 1, 2 |                                                                           |                                                                                 | i, j = 2, 1           |                            |                  |
| $E_{\mathrm{T}}^{\Delta R < 0.3} / E_{\mathrm{T}}(\ell_i)$     | Isolation metric ( $E_{\rm T}^{\Delta R < 0.3}$ = total energy              | i = 1, 2, 3, 4 | -            | -               | $\Delta \eta(\ell_i, \ell_j)$                                             | Separation in $\eta$ between the <i>i</i> th and <i>j</i> th leptons            | i, j = 1, 2           | -                          | -                |
|                                                                | deposited in a cone of radius $R = 0.3$ around                              |                |              |                 | $\Delta R(\ell_i, \ell_j)$                                                | Separation in <i>R</i> between the <i>i</i> th and <i>j</i> th leptons          | i, j = 1, 2           | i, j = 1, 2                | -                |
|                                                                | the lepton, and $E_{\rm T}$ = lepton energy)                                |                |              |                 | $\Delta R(\ell_i, \mathbf{j}_j)$                                          | Separation in R between the <i>i</i> th lepton and <i>j</i> th jet              | i, j = 1, 1           | -                          | i, j = 1, 1      |
| Dilepton type                                                  | $\mu\mu = 1, e\mu/\mu e = 2, ee = 3$                                        | -              | -            |                 | $A P(\ell aloga i)$                                                       | Senaration in Photoson the ith lenter and its                                   | <i>i</i> – 1 2        |                            | i, j = 1, 2      |
| $m_{\ell_i,\ell_j}$                                            | Invariant mass of the <i>i</i> th and <i>j</i> th leptons                   | i, j = 1, 2    | i, j = 1, 2  | i, j = 1, 2     | $\Delta K(i_i, \text{close-J})$                                           | closest jet                                                                     | l = 1, 2              | -                          | -                |
|                                                                |                                                                             | i, j = 3, 4    | i, j = 1, 3  |                 | $n_{\rm m}({\rm i})$                                                      | no of the leading jet                                                           | _                     | _                          | ./               |
| Zmatch                                                         |                                                                             |                | i, j = 2, 3  |                 | $F^{\text{miss}}$                                                         | $p_1$ of the reading jet<br>Magnitude of the missing transverse momentum        | _                     | _                          | · /              |
| $m_{\ell\ell}^{Z-match}$                                       | Invariant mass of pair of SFOS leptons that                                 | -              | 1            | -               | LT<br>∩boost-ℓℓ                                                           | Delay angle between the $\pi$ and the <i>i</i> th <i>i</i> st often of          | ; 1 2                 |                            | •                |
| a                                                              | minimises the difference with the Z boson mass                              |                |              |                 | $\theta_{\tau_{had}, jet_i}$                                              | Polar angle between the $\tau_{had-vis}$ and the <i>t</i> th jet after a        | l = 1, 2              | -                          | -                |
| $m_{\ell\ell}^{\text{other}}$                                  | Invariant mass of the other SFOS lepton pair                                | $\checkmark$   | -            | -               | hoost ( -                                                                 | Lorentz boost to the dilepton system                                            |                       |                            |                  |
| min. $m_{\ell\ell}^{\rm SFOS}$                                 | Minimum invariant mass out of all SFOS pairs                                | -              | 1            | -               | $\Delta R_{\ell_i, \text{jet}_i}^{\text{boost-}\ell_i \tau_{\text{had}}}$ | Separation in <i>R</i> between the <i>i</i> th lepton and <i>j</i> th jet       | i, j = 1, 2           | -                          | -                |
| $m_{4\ell}$                                                    | Invariant mass of four leptons                                              | 1              | -            | -               | - <b>J</b>                                                                | after a Lorentz boost to the $\tau_{had-vis}$ and <i>i</i> th lepton system     | i, j = 2, 1           |                            |                  |
| $m_{3\ell}$                                                    | Invariant mass of three leptons                                             | -              | 1            | -               | $m_{\tau\tau}$                                                            | Invariant mass of the two $\tau_{had-vis}$                                      | -                     | 1                          | 1                |
| $m_{\ell_i, \text{close-jet}}$                                 | Invariant mass of the <i>i</i> th lepton and its closest jet                | -              | i = 1, 2, 3  | i = 1, 2        | $\Delta R(\ell_i, \tau_i)$                                                | Separation in R between the <i>i</i> th lepton and <i>j</i> th $\tau_{had-vis}$ | -                     | <i>i</i> , <i>j</i> = 2, 1 | -                |
| $m_{3\ell jj}$                                                 | Invariant mass of the three leptons and the leading                         | -              | 1            | -               | $\Delta R(\ell_i, \tau \tau)$                                             | Separation in $R$ between the <i>i</i> th lepton and the                        | -                     | <i>i</i> = 1               | <i>i</i> = 1     |
|                                                                | (or two leading, for events with $N_{jet} \ge 2$ ) jets                     |                |              |                 |                                                                           | di- $\tau_{had-vis}$ system                                                     |                       |                            |                  |
| m <sub>jj</sub>                                                | Invariant mass of the two leading jets                                      | $\checkmark$   | -            | -               | $m_{\ell_i 	au_j}$                                                        | Invariant mass of the <i>i</i> th lepton and <i>j</i> th $\tau_{had-vis}$       | -                     | i, j = 2, 1                | -                |
| m <sub>all</sub>                                               | Invariant mass of all selected objects in the event                         | -              | -            | 1               | $m_{\ell \tau \tau}$                                                      | Invariant mass of the lepton and two $\tau_{had-vis}$                           | -                     | -                          | $\checkmark$     |
| $m_{\mathrm{T}}^{W}(\ell_{i}, E_{\mathrm{T}}^{\mathrm{miss}})$ | Transverse mass of a leptonically decaying W-boson                          | -              | -            | i = 1, 2        | $\vec{p_{\rm T}}(\ell) + \vec{p_{\rm T}}(\text{close-j})$                 | Vector sum of the $p_{\rm T}$ s of the lepton and its closest jet               | -                     | -                          | 1                |
|                                                                | reconstructed from the <i>i</i> th lepton and its closest jet               |                |              |                 | $\vec{p_{\mathrm{T}}}(	au_1) + \vec{p_{\mathrm{T}}}(	au_2)$               | Vector sum of the $p_{\rm T}$ s of the two $\tau_{\rm had-vis}$                 | -                     | $\checkmark$               | $\checkmark$     |
| $\Delta\eta(\ell_i,\ell_j)$                                    | Separation in $\eta$ between the <i>i</i> th and <i>j</i> th leptons        | -              | -            | i = 1, 2        |                                                                           |                                                                                 |                       |                            |                  |
| $\Delta R(\ell_i,\ell_j)$                                      | Separation in <i>R</i> between the <i>i</i> th and <i>j</i> th leptons      |                | i, j = 1, 2  | i, j = 1, 2     | Variable                                                                  | Description                                                                     | $\gamma\gamma + \ell$ | $\gamma\gamma+\tau$        |                  |
|                                                                |                                                                             |                | i, j = 1, 3  |                 |                                                                           |                                                                                 |                       |                            |                  |
|                                                                |                                                                             |                | i, j = 2, 3  |                 | $p_{\rm T}(\gamma\gamma)$                                                 | $p_{\rm T}$ of the diphoton system                                              | <b>v</b>              | ✓                          |                  |
| $\Delta R(\ell_i, \text{close-j})$                             | Separation in <i>R</i> between the <i>i</i> th lepton and its               | -              | i = 1, 2, 3  | i = 1, 2        | $p_{\rm T}(\ell)$                                                         | $p_{\rm T}$ of the lepton                                                       | <b>v</b>              | -                          |                  |
|                                                                | closest jet                                                                 |                |              |                 | $p_{\rm T}(\tau_{\rm had-vis})$                                           | $p_{\rm T}$ of the $\tau_{\rm had-vis}$                                         | -                     | $\checkmark$               |                  |
| min. $\Delta R(\ell, \text{jet})$                              | Minimum separation in <i>R</i> between any lepton and any jet               | -              | -            |                 | $E_{\rm T}^{\rm miss}$                                                    | Magnitude of the missing transverse momentum                                    | n 🗸                   | $\checkmark$               |                  |
| $L_{\mathrm{T}}$                                               | Scalar sum of the $p_{\rm T}$ of all leptons and the $E_{\rm T}^{\rm miss}$ | -              | 1            |                 | $\phi(E_{\rm T}^{\rm miss})$                                              | $\phi$ direction of the $E_{\rm T}^{\rm miss}$                                  | -                     | $\checkmark$               |                  |
| $H_{\mathrm{T}}$                                               | Scalar sum of the $p_{\rm T}$ of all jets                                   | -              |              | 1               | $n(\ell E_{\rm T}^{\rm miss})$                                            | <i>n</i> of the lepton- $E_{\rm T}^{\rm miss}$ system                           | 1                     | -                          |                  |
| $S_{\mathrm{T}}$                                               | Scalar sum of the $p_{\rm T}$ of all objects in the event                   | 1              | 1            | -               | $n(\gamma_i)$                                                             | n of the <i>i</i> th photon                                                     | _                     | 1                          |                  |
| $\Sigma Q_\ell$                                                | Sum of all lepton charges                                                   | -              | -            |                 | Negative 1 Sets                                                           | Number of jets with $ n  < 2.5$                                                 | 1                     |                            |                  |
| $N_{\rm jet}$                                                  | Number of jets in the event                                                 | -              | -            | 1               | $\Lambda D(\rho E^{\text{miss}})$                                         | A <b>B</b> between the lepton and the $E^{\text{miss}}$                         | •                     | •                          |                  |
| N <sub>b-jet</sub>                                             | Number of <i>b</i> -jets in the event                                       |                | -            | -               | $\Delta R(\iota, L_{\rm T})$                                              | $\Delta \mathbf{K}$ between the repton and the $E_{\rm T}$                      | v (                   | -                          |                  |
| $p_{\mathrm{T}}(\mathbf{j}_1)$                                 | $p_{\rm T}$ of the leading jet                                              |                | -            | -               | $\Delta R(\gamma \gamma, \ell E_{\rm T}^{\rm mass})$                      | $\Delta R$ between the diphoton system and the                                  | ✓                     | -                          |                  |
| $p_{\rm T}(jj)$                                                | $p_{\rm T}$ of the leading di-jet system                                    |                | -            | -               |                                                                           | lepton- $E_{\rm T}^{\rm miss}$ system                                           |                       |                            |                  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                               | Magnitude of the missing transverse momentum                                | 1              | $\checkmark$ | 1               | $\Delta \phi(\ell/	au_{ m had},\gamma\gamma)$                             | Separation in $\phi$ between the lepton                                         | $\checkmark$          | $\checkmark$               |                  |
| $\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{j}_{1})$   | $\phi$ angle between the $E_{\rm T}^{\rm miss}$ and the leading jet         | 1              | -            | -               |                                                                           | or $\tau_{\text{had-vis}}$ and the diphoton system                              |                       |                            |                  |
|                                                                |                                                                             |                |              |                 | $\Delta\phi(\gamma_1,\gamma\gamma)$                                       | Separation in $\phi$ between the leading                                        | 1                     | 1                          |                  |
|                                                                |                                                                             |                |              |                 |                                                                           | photon and the diphoton system                                                  |                       |                            |                  |
|                                                                |                                                                             |                |              |                 | min $\Delta \phi (F^{\text{miss}}_{\pm} i f$                              | 2) Minimum $\phi$ angle between the $F^{\text{miss}}$                           | ./                    | _                          |                  |
|                                                                |                                                                             |                |              |                 | $\lim \Delta \psi(\mathcal{L}_{T}, J, \iota)$                             | the lepton and any jet $L_{T}$                                                  | v                     | -                          |                  |
|                                                                |                                                                             |                |              |                 | A ( Emiss )                                                               | Concretion in the trace the $T^{\text{miss}}$ and the                           |                       |                            |                  |
| Dui                                                            | Zhana IUC C                                                                 | aminar         | · Roo        | ont U           | $\Delta \phi(E_{\rm T}^{\rm and s}, \gamma \gamma)$                       | Separation in $\phi$ between the $E_{\rm T}^{\rm mass}$ and the                 | ✓                     | ✓                          | 27               |
| nui                                                            | LIIU Je                                                                     | FIIIIAI        | . 1160       |                 | I                                                                         | diphoton system                                                                 |                       |                            |                  |

# Multilepton systematic table

| Uncertainty source              | Relative impact of systematic uncertainties [%] |                             |             |  |  |  |
|---------------------------------|-------------------------------------------------|-----------------------------|-------------|--|--|--|
|                                 | ML channels                                     | $\gamma\gamma$ +ML channels | Combination |  |  |  |
| Systematic                      | 22                                              | 14                          | 19          |  |  |  |
| MC statistics                   | 5                                               | <1                          | 3           |  |  |  |
| Experimental                    | 5                                               | <1                          | 3           |  |  |  |
| Detector response               | 4                                               | <1                          | 3           |  |  |  |
| Luminosity and pile-up          | <1                                              | <1                          | <1          |  |  |  |
| Electrons                       | <1                                              | <1                          | <1          |  |  |  |
| Muons                           | <1                                              | <1                          | <1          |  |  |  |
| $	au_{ m had-vis}$              | <1                                              | <1                          | <1          |  |  |  |
| Jets and $E_{\rm T}^{\rm miss}$ | 3                                               | <1                          | 2           |  |  |  |
| Flavour-tagging                 | 1                                               | <1                          | <1          |  |  |  |
| Photons                         | <1                                              | <1                          | <1          |  |  |  |
| <b>Background estimation</b>    | <1                                              | <1                          | <1          |  |  |  |
| Theoretical                     | 13                                              | 14                          | 13          |  |  |  |
| Signal                          | 10                                              | 12                          | 11          |  |  |  |
| Backgrounds                     | 4                                               | 2                           | 3           |  |  |  |
| Top quark                       | 1                                               | -                           | <1          |  |  |  |
| Vector boson                    | 3                                               | -                           | 2           |  |  |  |
| Single Higgs                    | 1                                               | 2                           | 1           |  |  |  |
| Other                           | <1                                              | -                           | <1          |  |  |  |

Rui Zhang

# **HEFT benchmark**



| Benchmark | $c_{hhh}$ | $C_{tth}$ | $c_{ggh}$ | $c_{gghh}$ | <i>C</i> <sub>tthh</sub> |
|-----------|-----------|-----------|-----------|------------|--------------------------|
| SM        | 1.00      | 1.00      | 0         | 0          | 0                        |
| 1         | 5.11      | 1.10      | 0         | 0          | 0                        |
| 2         | 6.84      | 1.03      | -1/3      | 0          | 1/6                      |
| 3         | 2.21      | 1.05      | 1/2       | 1/2        | -1/3                     |
| 4         | 2.79      | 0.90      | -1/3      | -1/2       | -1/6                     |
| 5         | 3.95      | 1.17      | 1/6       | -1/2       | -1/3                     |
| 6         | -0.68     | 0.90      | 1/2       | 1/4        | -1/6                     |
| 7         | -0.10     | 0.94      | 1/6       | -1/6       | 1                        |

 Complementary sensitivities contributed from different channels, driven by the softness/hardness of the kinematics in a given benchmark

### **Combine with single Higgs measurements**

•  $\kappa_{\lambda}$  can affect single Higgs processes via NLO electroweak corrections



 Affect the inclusive cross-sections, decay branching fractions and differential distributions



Rui Zhang

### $\kappa_{\lambda}$ constraints with least assumptions

• Generic fit: couplings ( $\kappa_{\lambda}$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_{\tau}$ ,  $\kappa_V$ ) are all floating in the fit



|                         | Best fit | Obs         | Ехр         |
|-------------------------|----------|-------------|-------------|
| $\kappa_{\lambda}$ only | 3.0      | [–0.4, 6.3] | [–1.9, 7.6] |
| Generic fit             | 2.3      | [–1.4, 6.1] | [–2.2, 7.7] |

• Dominated by HH while H provide strong constraints to other couplings.

Rui Zhang

### **Projection scenarios**

- No systematic uncertainties.
- Baseline: systematic uncertainties are scaled as in Table 2.
- Theoretical uncertainties halved: theoretical systematic uncertainties are scaled as in Table 2, while experimental systematic uncertainties are assumed to keep their Run 2 values.
- Run 2 systematic uncertainties: both the theoretical and experimental systematic uncertainties are assumed to keep their Run 2 values.

| Source                                                  | Scale factor | b̄bγγ | $bar{b}	au^+	au^-$ |                                  |                                               |  |
|---------------------------------------------------------|--------------|-------|--------------------|----------------------------------|-----------------------------------------------|--|
| <b>Experimental Uncertainties</b>                       |              |       |                    | bbł                              | h                                             |  |
| Luminosity                                              | 0.6          | *     | *                  |                                  | <u>, , , , , , , , , , , , , , , , , , , </u> |  |
| <i>b</i> -jet tagging efficiency                        | 0.5          | *     | *                  | Systematic uncertainties         | Scale factors for                             |  |
| <i>c</i> -jet tagging efficiency                        | 0.5          | *     | *                  | Systematic uncertainties         | HL-LHC baseline scenario                      |  |
| Light-jet tagging efficiency                            | 1.0          | *     | *                  | The exection law earth inter     | 0.5                                           |  |
| Jet energy scale and resolution, $E_{\rm T}^{\rm miss}$ | 1.0          | *     | *                  |                                  |                                               |  |
| $\kappa_{\lambda}$ reweighting                          | 0.0          | *     | *                  | b-jet tagging efficiency         | 0.5                                           |  |
| Photon efficiency (ID, trigger, isolation efficiency)   | 0.8          | *     |                    | c-jet tagging efficiency         | 0.5                                           |  |
| Photon energy scale and resolution                      | 1.0          | *     |                    | Light-iet tagging efficiency     | 1.0                                           |  |
| Spurious signal                                         | 0.0          | *     |                    | Lat operate scale and resolution | 1.0                                           |  |
| Value of $m_H$                                          | 0.08         | *     |                    | Jet energy scale and resolution  | 1.0                                           |  |
| $\tau_{\rm had}$ efficiency (statistical)               | 0.0          |       | *                  | Luminosity                       | 0.6                                           |  |
| $\tau_{\rm had}$ efficiency (systematic)                | 1.0          |       | *                  | Background bootstrap uncertainty | 0.5                                           |  |
| $	au_{ m had}$ energy scale                             | 1.0          |       | *                  | Background shape uncertainty     | 1.0                                           |  |
| Fake- $\tau_{had}$ estimation                           | 1.0          |       | *                  |                                  |                                               |  |
| MC statistical uncertainties                            | 0.0          |       | *                  |                                  |                                               |  |
| Theoretical Uncertainties                               | 0.5          | *     | *                  | Table 2                          |                                               |  |

#### Combined µ results





#### **Combined k results**



H Rui Zhang

#### HEFT 1D scans



💾 Rui Zhang



- Difference mainly comes from powerful Xbb tagger in CMS in boosted analysis

Rui Zhang

# Compare with CMS - bbtt

#### Trigger Strategy Phys. Lett. B 842 (2023) 137531



<u>reference</u>

CMS

ATLAS and CMS use a similar trigger strategy based only on leptons and  $au_{
m had}$ 



ATLAS acceptance 4+4+1% for ggF and 2.5+2.5+0.7 VBF SM

CMS acceptance 5.5 (3.4)% for the ggF (VBF) SM

Rui Zhang

# Compare with CMS - bbyy

- Close results between the two
  - CMS: μ<sub>HH</sub> < 8.4 (5.5 exp)
  - ATLAS this round:  $\mu_{HH} < 4.0$  (5.0 exp)
  - CMS:  $-1.5 < \kappa_{\lambda} < 6.7$  (68% exp)
  - ATLAS:  $-1.2 < \kappa_{\lambda} < 6.1$  (68% exp)
- Slightly better results from ATLAS coming from
  - Slightly better signal resolution
  - High/low mass categorisation



#### Compare with CMS - bbWW (bbll+ET<sup>miss</sup>)

- Close results between the two
  - CMS: μ<sub>HH</sub> < 14 (18 exp)
  - ATLAS: μ<sub>HH</sub> < 9.7 (16.2 exp)
  - CMS:  $-7.2 < \kappa_{\lambda} < 13.8 (-8.7 < \kappa_{\lambda} < 15.2 \text{ exp})$
  - ATLAS:  $-6.2 < \kappa_{\lambda} < 13.3 (-8.1 < \kappa_{\lambda} < 15.5 \text{ exp})$
  - CMS:  $-1.1 < \kappa_{\lambda} < 3.2 (-1.4 < \kappa_{\lambda} < 3.5 exp)$
  - ATLAS:  $-0.17 < \kappa_{2V} < 2.4 (-0.51 < \kappa_{2V} < 2.7 exp)$
- Stronger constraints in κ<sub>2V</sub> from ATLAS
  - A dedicated VBF signal region / category may have helped



### Compare with CMS - bbZZ(4ℓ)

- CMS <u>http://www.arxiv.org/abs/2206.10657</u>
  - μ<sub>HH</sub> < 32.4 (39.6 exp)
  - $-8.8 (-9.8) < \kappa_{\lambda} < 13.4 (15.0)$  Accxeff
- ATLAS:

ggF ATLAS 0.164, CMS 0.168
Bkg: ATLAS 30, CMS 67.06

• μ<sub>HH</sub> < 39 (35 exp)



# **Compare with CMS multilepton**



📕 Rui Zhang