Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

Jasper Parkkila (WUT) for the ALICE Collaboration

CERN LHC seminar 18 June 2024 Based on PRL. 132 (2024) 172302

WARSAW UNIVERSITY OF TECHNOLOGY

Matter in early Universe

- Early Universe immediately after Big Bang: free quarks and gluons not confined to hadrons
- Can be created small nuclei-sized droplets at the LHC in heavy-ion collisions
- Study of this matter can improve the understanding on a strongly-interacting system as well as the conditions in early Universe

Observations on the heavy-ion systems (Pb-Pb, Au-Au, etc.)

- Strongly-interacting "medium" is formed in collisions according to several indicators (nuclear modification, jet quenching, strangeness enhancement, ...)
- This medium is fluid-like, implied by the anisotropic momentum pattern of the hadronic products
- The anisotropic expansion is a result of "collective" behavior, and is very prominent in heavy-ion systems
- Collectivity allows the constraining of the medium dynamical properties through model comparisons and tuning

Origin of collectivity in heavy-ion theory

 Hydrodynamics is a mainstream description of the medium

- The system undergoes a fluid-like expansion under the pressure gradients of the initial-state geometry.
- Successful description of wide range of experimental observables

Two-particle correlations – experimental quantification of medium expansion

- Experimentally, only final-stage particles and their attributes can be measured
- How can the collective-like effects be experimentally quantified?

• **Two-particle correlations:** measurement of the polar angle $\Delta \varphi$ and pseudorapidity $\Delta \eta$ between all pairs of charged particles coming from the collision. What sort of correlations can be observed?

Two-particle correlations – typical features

 $\Delta \eta \Delta \varphi$ form the near-side peak

Particles from the same jet at low Particles from back-to-back jets at $\Delta \varphi \sim \pi$ form the away-side peak

• Collective-like effects manifest themselves as the double-ridge structure in the long-range correlations

• The double-ridge emerges when a large *elliptic* harmonic component is present: characterizes the elliptic expansion

Long-range correlations across collision systems of varying size

ALICE

• This signal is present across various collision system sizes

- Long-range correlation emerges during the early stages
- In heavy-ion systems medium response to initial conditions
- In pp unclear (QGP? Multi-parton scattering? PYTHIA ropes? Initial-stage effect?)

Long-range correlations in pp – basic facts

- Prominent long-range near-side ridge in high multiplicity ($N_{\rm ch} > 110$) collisions
- Small signal in minimum bias (0–100%)
- How small can the system get and still exhibit these signals?
- Several theoretical approaches with or without medium

Analysis details and selection criteria

The ALICE detector in Run 2.

Events and detectors:

- pp $\sqrt{s} = 13 \,\mathrm{TeV}$ recorded in 2017–2018
- 1.3 billion MB events
- TPC+ITS for tracking

Charged tracks and multiplicity:

- Multiplicity estimation: accepted tracks in $|\eta| < 1.0$, $p_{\rm T} > 0.2 \, {\rm GeV}/c$
- Trigger and associated particles* $1.0 < p_{\rm T} < 2.0 \, {\rm GeV}/c, \ |\eta| < 1.0$
- "Long-range" definition $1.4 < |\Delta\eta| < 1.8$

*In a two-particle correlation particle 1 "trigger" and particle 2 "associated".

Analysis strategy for associated yield

• Two-particle correlation function between trigger and associated particles ($p_{T,trig} > p_{T,assoc}$):

Long-range $\Delta \varphi$ -correlations in low multiplicity

• Near-side ridge clearly visible in high-multiplicity events.

Long-range $\Delta \varphi$ -correlations in low multiplicity

Find the ZYAM* and $|\Delta\varphi_{\min}|$ by fitting $F(\Delta\varphi) = A(1 + 2\sum_{n=1}^{3} v_n^{2,\text{cent}} \cos(n\Delta\varphi)) + C_{\text{ZYAM}}$ to the signal. • Measured in $1.4 < |\Delta\eta| < 1.8$ to suppress short-range nonflow correlations • $p_{\text{T}} > 1.0 \text{ GeV}/c$ (trig and assoc) to avoid near-side jet broadening into $|\Delta\eta| > 1.4$ Baser Parkline Long-range correlations in pp collisions 18.6.2024 12/24

Long-range $\Delta \varphi$ -correlations in low multiplicity

Precision uncertainty

- Method simple until one goes to very small signals
- Uncertainties evaluated using tailored bootstrapping method
- Upper-limits for non-gaussian yield-distributions
- Limits for feasible compatibility analysis with other results

Precision uncertainty

ALICE

Bootstrapping strategies:

- Statistics evaluation: Gaussian-distributed relative offset to each bin of Y(Δφ)
- Combined evaluation: add a fixed Gaussian-distributed error based on the ratio between variant and default configuration
- Per-systematic evaluation: combine one configuration with statistics. Subtract statistics-only for pure systematic contribution

Configuration	Contribution	
$ z_{ m vtx} < 10{ m cm}$	< 5%	
Long-range $1.5 < \Delta\eta $	3–22%	
Tracking mode	3–10%	
Residual acceptance	\sim 4%	
Integration limit	5–25%	

Results

Ridge yield: precision measurement down to very low multiplicity in pp

- Near-exponential increase of yield toward higher multiplicities
- Non-zero yield even in very low multiplicity collisions
- The lowest bins are presented as 95% confidence limit

L4 / 24

Results

Ridge yield: comparison with CMS results, PRL 116, 172302 (2016)

Models overview

Model	Physics	Observations	Refs
PYTHIA8 Monash	Jets only (2013)	No soft partonic or	T. Sjöstrand
		hadronic interactions	et al.,
			pythia.org
PYTHIA8 String Shoving	Jets and Flow	Uses strings to	C. Bierlich <i>et</i>
		simulate soft	<i>al.</i> PLB 779
		interactions	(2018) 58-63
EPOS4	Jets and Flow	Uses core	K. Werner <i>et</i>
		(hydrodynamic	<i>al.</i> PRC 92
		expansion) and	(2015) 034906
		corona (hadrons from	
		string decays)	
AMPT String Melting	Jets and Flow	Uses soft and hard	Zi-Wei <i>et al.</i>
		partonic and hadronic	PRC 72
		interactions	064901

- Models use 2 < |∆η| < 4 due to wide jet fragmentation peak</p>
- Monash: no yield (expected)
- String shoving: yield is produced in lower multiplicities, but too small in magnitude
- EPOS: yield reproduced in high multiplicities, no yield in low multiplicities
- All models underestimate the ridge yield

Interpretation by comparison to e^+e^-

Non-trivial interpretation of pp results due to intricate structure.

- Study the simpler processes involved in e⁺e⁻ annihilations (point-like collision: no uncertainties on initial geometry or parton distribution function description)
- $igodoldsymbol{eq}$ e⁺e⁻ do not exhibit yield within the given confidence levels

$+e^-$ observations

Interpretation by comparison to e^+e^-

Jasper Parkkila

18.6.2024

18/24

e^+e^- observations

Main mechanism in e^+e^- , thrust vs beam axis

 $_{\rm e}^+ e^-$ observations

Latest e^+e^- insights

- New results of e⁺e⁻ long-range correlations: BELLE, ALEPH
- $\bullet~$ BELLE: no yield at the lowest multiplicities $N_{\rm ch} \lesssim 10$
- ALEPH: Consistent observations in low multiplicity: no yield
- Hint of long-range correlations in e^+e^- at higher multiplicity, currently 1.02σ signal

ALTOP

 e^+e^- observations

How to compare pp collisions to e^+e^- collisions from the ALEPH archived data?

Jasper Parkkila

Conversion of ALEPH multiplicity

- Estimate the limits of uncertainty on the conversion of the multiplicity
- Target: multiplicity defined by accepted particles within $|\eta| < 1.0$, $\rho_{\rm T} > 0.2 \, {\rm GeV}/c$

Experiment	$ \eta_{max} $	$p_{\mathrm{T,min}}$	\sqrt{s}
ALICE pp	1.0	0.2	13 TeV
ALEPH e^+e^-	1.738	0.2	91 GeV

e^+e^- observations

Conversion of ALEPH multiplicity

- Estimate the limits of uncertainty on the conversion of the multiplicity
- Target: multiplicity defined by accepted particles within $|\eta| < 1.0$, $p_{\rm T} > 0.2 \,{\rm GeV}/c$
- Multiplicity conversion between different systems and experiments is done using PYTHIA
 - Simulate pp at $\sqrt{s} = 13 \, {
 m TeV}$ in both experimental acceptances. Multiplicity ratio to obtain $\alpha_{
 m A}$
 - 2 Simulate e^+e^- at $\sqrt{s} = 91 \,\text{GeV}$ in both experimental acceptances. Multiplicity ratio to obtain α_B

$$\alpha_{\rm A} = \frac{\textit{N}_{\rm ch,pp}^{\rm ALICE}}{\textit{N}_{\rm ch,pp}^{\rm ALEPH}} \qquad \alpha_{\rm B} = \frac{\textit{N}_{\rm ch,e^+e^-}^{\rm ALICE}}{\textit{N}_{\rm ch,e^+e^-}^{\rm ALEPH}}$$

Experiment	$ \eta_{max} $	$p_{\mathrm{T,min}}$	\sqrt{s}
ALICE pp	1.0	0.2	13 TeV
ALEPH e^+e^-	1.738	0.2	91 GeV

Conversion of ALEPH multiplicity

- Estimate the limits of uncertainty on the conversion of the multiplicity
- Target: multiplicity defined by accepted particles within $|\eta| < 1.0$, $p_{\rm T} > 0.2 \,{\rm GeV}/c$
- Multiplicity conversion between different systems and experiments is done using PYTHIA
 - Simulate pp at $\sqrt{s} = 13 \text{ TeV}$ in both experimental acceptances. Multiplicity ratio to obtain α_A
 - 2 Simulate e^+e^- at $\sqrt{s} = 91 \,\text{GeV}$ in both experimental acceptances. Multiplicity ratio to obtain α_B

Method	Experiment	Corr. factor $\alpha_{A/B}$
	ALEPH pp 13 TeV	0.57 (A)
PTINIA	ALEPH e^+e^- 91 GeV	0.78 (B)
Flat $\mathrm{d} N/\mathrm{d} \eta$	ALEPH	0.63

Experiment	$ \eta_{max} $	$p_{\mathrm{T,min}}$	\sqrt{s}
ALICE pp	1.0	0.2	13 TeV
ALEPH e^+e^-	1.738	0.2	91 GeV

22/24

18.6.2024

Ridge yield in low multiplicity pp: comparison to ALEPH archived data $\mathrm{e^+e^{-1}}$

Summary

- Precise measurement of near-side ridge yield in 13 TeV pp collisions down to very low multiplicity
- pp $Y^{
 m ridge}$ larger than e^+e^- at 91 GeV by $\gtrsim 5\sigma$ and at 183-209 GeV $\gtrsim 6.3\sigma$
- \bullet First quantitative comparison between the near-side yield of e^+e^- and pp collisions
- Identify the underlying mechanisms responsible for the emergence of near-side yield in pp

The findings constrain the origin of collective-like effects in small hadronic collisions.

• Further precision measurements in Run3 enable a broad range of kinematic cuts, investigations on identified particles and measurements transverse to the jet propagation

Backup

Jasper Parkkila

Backup

• Two-particle correlation function between trigger and associated particles ($p_{T,trig} > p_{T,assoc}$).

$$\begin{split} \frac{1}{N_{\rm trig}{}^{*}(z)} \frac{d^2 N_{\rm pair}}{d\Delta \eta \Delta \varphi} (\Delta \eta, \Delta \varphi, z) &= N_{\rm pair}^{*, \rm mixed}(0, 0, z) \frac{N_{\rm pair}^{*, \rm same}(\Delta \eta, \Delta \varphi, z)}{N_{\rm pair}^{*, \rm mixed}(\Delta \eta, \Delta \varphi, z)}, \\ \frac{1}{N_{\rm trig}} \frac{d^2 N_{\rm pair}}{d\Delta \eta \Delta \varphi} &= \sum_{z} \dots \end{split}$$

• Per-trigger yield. Measure over region $1.4 < |\Delta \eta| < 1.8$ at $p_{\rm T} > 1$, GeV/c i.e. outside the jet contributions:

$$Y(\Delta arphi) = rac{1}{N_{
m trig}} rac{{
m d}N_{
m pair}}{{
m d}\Delta arphi} = \int_{1.4 < |\Delta \eta| < 1.8} \left(rac{1}{N_{
m trig}} rac{{
m d}^2 N_{
m pair}}{{
m d}\Delta \eta {
m d}\Delta arphi}
ight) rac{1}{\delta_{\Delta \eta}} {
m d}\Delta \eta - C_{
m ZYAM}.$$

• Ridge-yield, obtained by integrating the near-side peak (main observable in this analysis):

$$Y^{\rm ridge} = \int_{|\Delta\varphi| < |\Delta\varphi_{\rm min}|} \frac{1}{N_{\rm trig}} \frac{{\rm d}N_{\rm pair}}{{\rm d}\Delta\varphi} {\rm d}\Delta\varphi$$

Backup

Near-side jet fragmentation peak

• Long-range minumum $\Delta \eta = 1.4$ (at \mathbf{v}) not affected by the jet-fragmentation peak.

Jasper Parkkila

Estimation of uncertainty and compatibility with ALEPH points

- The conversion limits approach entails two estimates of compatibility $(N\sigma)$ between pp and e^+e^-
- Evaluation of compatibility needs a sufficiently conservative approach
- \bullet Underlying ALEPH $Y_{\rm ridge}$ distributions unknown to us

- Bootstrapping strategy to evaluate the uncertainty: multiple evaluations of Y_{ridge} by variating the underlying $Y(\Delta \varphi)$
- Systematic uncertainty included in the bootstrapping method
- Compatibility: interpolate ALICE results points at the ALEPH conversion limits
- Assume a conservative half-gaussian distribution for the ALEPH Y_{ridge}
- Consider entire range of ALEPH points to estimate the probability that the ALEPH and ALICE results overlap (p-value) $\rightarrow N\sigma$

