

Study of entanglement in space-like and time-like separated top quark pairs at CMS

Giulia Negro on behalf of the CMS Collaboration

CERN EP seminar

25 June 2024

Entanglement in QM

- Qubit = two-level quantum system $|\,0\rangle,\,|\,1\rangle \to {\rm most\ simple\ quantum\ system}$
- Two qubits \rightarrow most simple example of quantum correlations
- A quantum state of two subsystems A and B is separable when its density matrix:

$$ho = \sum_i p_i
ho_A^i \otimes
ho_B^i$$

- Non-separability of a quantum state = entanglement
 - entangled states cannot be described by independent superpositions
 - measuring particle spin in an entangled system immediately reveals the spin state of the second particle even when casually separated
- "Spooky Action at a Distance": in 1935 Einstein, Podolsky and Rosen suggested that QM was incomplete (hidden variables)
- In 1964, John Bell introduced his famous inequality, suggesting an experimental test that could disproof EPR

Entanglement in HEP

- Several experimental tests carried out since 1972
 - mostly with electrons and photons at low energy
- Interest to repeat these tests with massive systems at high energy
- Measurements with K and B meson pairs performed by <u>CPLEAR</u>, <u>KLOE</u>, <u>BABAR</u>, and Belle:
 - e+e- entanglement at Belle measured using time-dependent flavor asymmetry

e+ e-
$$\rightarrow \Upsilon$$
(4s) $\rightarrow B^0 \overline{B^0}$

$$\left|\psi\right\rangle = \frac{1}{\sqrt{2}} \left[\left|B^{0}\right\rangle_{1} \otimes \left|\overline{B}^{0}\right\rangle_{2} - \left|\overline{B}^{0}\right\rangle_{1} \otimes \left|B^{0}\right\rangle_{2}\right]$$

entangled state

 \rightarrow data described by quantum mechanics

Aspect, Clauser, and Zeilinger

<u>PRL 99, 131802 (2007)</u>

Entanglement at the LHC

4

- LHC can provide a unique environment to study entanglement and violation of Bell's inequalities
 - simplest qubits at LHC = $t\bar{t}$ pair
- First observation of entanglement in tt by ATLAS at the end of last year
- First observation by CMS a few months ago in dilepton events
- Recently first observation in lepton+jets events by CMS - first time with casually separated top quarks at high m_{tt̄} !

arXiv:2406.03976

<u>CMS-PAS-TOP-23-007</u>

Available on the CERN CDS information server	CMS PAS TOP-23-007
CMS Physics Analy	sis Summary
Contact: cms-pag-conveners-top@cern.ch	2024/06/12
Measurements of polarization, entanglement in top quark pairs from pp collisions at	, spin correlations, and using lepton+jets events $\sqrt{s} = 13$ TeV
The CMS Collab	oration

Why Top Quarks ?

- Ideal candidate for spin measurements:
 - extremely short lifetime allows measuring polarization and spin correlation in $t\bar{t}$ production
 - **spin information preserved** in the angular distribution of its decay products
 - spin information ~100% transmitted to charged leptons and down type quarks
- Top spin information accessed "best" in leptonic decays of W

Spin correlations

• Probed by angular distribution of decay products in helicity basis:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}^{+} \cdot \hat{\ell}^{+} + \mathbf{B}^{-} \cdot \hat{\ell}^{-} - \hat{\ell}^{+} \cdot \mathbb{C} \cdot \hat{\ell}^{-} \right)$$
polarization spin correlation

$$\mathsf{B}^{\dagger\prime}=\begin{pmatrix}\mathsf{x}\\\mathsf{x}\\\mathsf{x}\end{pmatrix}$$

- Spin dependence of *tt* production
 completely characterized by 15 coefficients
 - can be probed individually by measuring 1D angular distributions

$$\frac{1}{\sigma}\frac{d\sigma}{dx} = \frac{1}{2}\left(1 + \left[\text{Coef.}\right]x\right)f(x)$$

Observable	Coefficient	Coefficient function
$\cos \theta_1^k$	B_1^k	b_k^+
$\cos \theta_2^k$	$B_2^{\overline{k}}$	b_k^{-}
$\cos \theta_1^r$	B_1^r	b_r^+
$\cos \theta_2^r$	$B_2^{\overline{r}}$	b_r^-
$\cos \theta_1^n$	B_1^n	b_n^+
$\cos \theta_2^n$	B_2^n	b_n^-
$\cos \theta_1^k \cos \theta_2^k$	C_{kk}	c _{kk}
$\cos \theta_1^r \cos \theta_2^r$	C _{rr}	C _{rr}
$\cos \theta_1^n \cos \theta_2^n$	C_{nn}	C _{nn}
$\cos \theta_1^r \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^r$	$C_{rk} + C_{kr}$	c _{rk}
$\cos \theta_1^r \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^r$	$C_{rk} - C_{kr}$	<i>c</i> _n
$\cos\theta_1^n\cos\theta_2^r+\cos\theta_1^r\cos\theta_2^n$	$C_{nr} + C_{rn}$	C _{nr}
$\cos \theta_1^n \cos \theta_2^r - \cos \theta_1^r \cos \theta_2^n$	$C_{nr} - C_{rn}$	c _k
$\cos \theta_1^n \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^n$	$C_{nk} + C_{kn}$	c _{kn}
$\cos \theta_1^n \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^n$	$C_{nk} - C_{kn}$	$-c_r$
$\cos \varphi$	D	$-(c_{kk}+c_{rr}+c_{nn})/3$
$\cos \varphi_{ m lab}$	$A_{\cos \varphi}^{\text{lab}}$	—
$ \Delta \phi_{\ell \ell} $	$ A_{ \Delta \phi_{\ell \ell} } $	—
$ \Delta\eta_{\ell\ell} $	$ \Delta\eta_{\ell\ell} $	—

• In SM, $t\bar{t}$ production ~ unpolarized

•
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{1/2}^i} = \frac{1}{2} (1 + B_{1/2}^i \cos\theta_{1/2}^i)$$

 \rightarrow not sensitive to entanglement

 $\mathsf{B}^{\dagger\prime} = \begin{pmatrix} \mathsf{x} \\ \mathsf{x} \\ \mathsf{x} \end{pmatrix}$

k 🖌

basis:

{**k**,**r**,**n**}

 $n \theta^{n_{\pm}}$

 $\theta^{k_{\pm}}$

top

anti-top

beam

• In SM, $t\bar{t}$ production ~ unpolarized

but top spins strongly correlated with antitop spins \rightarrow rich structure of spin correlations

$$\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta_1^i \cos\theta_2^i)} = \frac{1}{2} \left[1 - \frac{C_{ii}(\cos\theta_1^i \cos\theta_2^i)}{|\cos\theta_1^i \cos\theta_2^i|}\right] \ln \frac{1}{|\cos\theta_1^i \cos\theta_2^i|} \quad C = \left(\begin{array}{c} \times \\ \times \\ \end{array} \right)$$

for diagonal spin correlations coefficients

• In SM, $t\bar{t}$ production ~ unpolarized

but top spins strongly correlated with antitop spins \rightarrow rich structure of spin correlations

• In SM, $t\bar{t}$ production ~ unpolarized

but top spins strongly correlated with antitop spins \rightarrow rich structure of spin correlations

$$cos \varphi = \hat{\ell}_1 \cdot \hat{\ell}_2$$

- most precise observable
- maximal sensitivity to degree of alignment of top quark spins

→ focus of entanglement measurement

Entanglement of top quarks

- Can be measured using spin correlations variables
- Depends on production mode, $m_{t\bar{t}}$, scattering angle of the top quark (Θ)

Afik, De Nova Eur. Phys. J. Plus **136**, 907

Entanglement of top quarks

- Can be measured using spin correlations variables
- Depends on production mode, $m_{t\bar{t}}$, scattering angle of the top quark (Θ)
- SM predicts entangled states:
 - at the production threshold region in gg fusion production
 - at the boosted region for central production of the $t\bar{t}$ system

Afik, De Nova <u>Eur. Phys. J. Plus **136**, 907</u>

Entanglement of top quarks

- Can be measured using spin correlations variables
- Depends on production mode, $m_{t\bar{t}}$, scattering angle of the top quark (Θ)
- SM predicts entangled states:
 - at the production threshold region in gg fusion production
 - at the boosted region for central production of the $t\bar{t}$ system

low relative velocity of top quarks \rightarrow time-like separated events

Afik, De Nova Eur. Phys. J. Plus **136**, 907

high relative velocity

of top quarks

 \rightarrow space-like

At the LHC, top quarks are produced in a mixed state
 → can be represented as a density operator:

$$\rho = \frac{I_4 + \Sigma_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) - \Sigma_{i,j} C_{ij} \sigma^i \otimes \sigma^j}{4}$$

$$A = \left(\begin{array}{c} \times \times \times \\ \times \times \end{array} \right)^4$$

$$C = \left(\begin{array}{c} \times \times \times \\ \times \times \end{array} \right)^4$$

 $\rho = \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$

• **Peres-Horodecki criterion**: if a system is separable,

Peres, <u>Phys. Rev. Lett. 77, 1413</u> Horodecki, <u>Phys. Lett. A 232, 5</u>

the transpose with respect to a subspace of ρ is a non-negative operator

$$\rho^{T2} = \sum_i p_i \rho_A^i \otimes (\rho_B^i)^T$$

- \rightarrow system is entangled if at least 1 eigenvalue is negative
- For $t\bar{t}$ system, spin density matrix is separable if all eigenvalues are positive

→ top quarks are entangled in a certain phase space if at least one eigenvalue is < 0

• Peres-Horodecki criterion:

using simpler observables, a sufficient condition to observe entanglement in top quarks is:

$$\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$$

Afik, De Nova Eur. Phys. J. Plus **136**, 907

 q_d

- Two approaches:
 - Use full angular information of two decay products to measure full matrix C and then construct Δ_E
 - Use χ and $\tilde{\chi}$ distributions to measure D and \tilde{D}
 - potentially improved sensitivity since we can use simpler 1D angular distributions

$$\frac{d\sigma}{d\cos\chi} = A(1 + D\cos\chi)$$

$$\frac{d\sigma}{d\cos\tilde{\chi}} = A(1 + \tilde{D}\cos\tilde{\chi})$$

 χ = opening angle between the 2 decay products

 $\tilde{\chi} = \chi$ with inverted sign of n-component in one of the decay products

• Peres-Horodecki criterion:

using simpler observables, a sufficient condition to observe entanglement in top quarks is:

$$\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$$

Afik, De Nova Eur. Phys. J. Plus **136**, 907

- Two approaches:
 - Use full angular information of two decay products to measure full matrix C and then construct Δ_E
 - Use χ and $\tilde{\chi}$ distributions to measure D and \tilde{D}
 - potentially improved sensitivity since we can use simpler 1D angular distributions

$$\frac{d\sigma}{d\cos\chi} = A(1+D\cos\chi) \quad \rightarrow \frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1-D\cos\varphi) \text{ in dilepton events}$$
$$\chi = \text{opening angle between} \text{the 2 decay products}$$

 $\tilde{\chi} = \chi$ with inverted sign of n-component in one of the decay products

• Four maximally entangled states:

$$\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$$

Sufficient condition for entanglement

• Four maximally entangled states:

• At low $m_{t\bar{t}}$: $C_{rr} > 0$ and $C_{kk} > 0$

$$\Delta_E = C_{nn} + C_{rr} + C_{kk} = Tr[C] = -3D > 1$$
$$D = -\frac{\text{tr}[C]}{3} \longrightarrow D < -1/3$$

 $\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$ Sufficient condition for entanglement

• At low $m_{t\bar{t}}$: $C_{rr} > 0$ and $C_{kk} > 0$

$$\Delta_E = C_{nn} + C_{rr} + C_{kk} = Tr[C] = -3D > 1$$
$$D = -\frac{\text{tr}[C]}{3} \rightarrow D < -1/3$$

 $\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$ Sufficient condition for entanglement

• At low $m_{t\bar{t}}$: $C_{rr} > 0$ and $C_{kk} > 0$

$$\Delta_E = C_{nn} + C_{rr} + C_{kk} = Tr[C] = -3D > 1$$
$$D = -\frac{\text{tr}[C]}{3} \rightarrow D < -1/3$$

 $\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$

Sufficient condition for entanglement

→ measure D, \tilde{D} to access entanglement information in top quark events!

Dilepton vs lepton+jets

Dilepton arXiv:2406.03976 submitted to ROPP

- 36.3 fb⁻¹ of 2016 data @13 TeV
 - based on <u>PRD 100 (2019) 072002</u>
- Lower branching ratio
- top spin info 100 % transmitted to charged leptons → easy to identify
- Lower p_T cuts for leading/subleading lepton
 (25/20 GeV) → higher efficiency at the threshold
- Worse $m_{t\bar{t}}$ resolution \rightarrow not ideal for differential measurement
- Best for threshold region
 - high entanglement
 - mostly time-like separated events

Lepton + jets

CMS-PAS-TOP-23-007

- 138 fb⁻¹ of data @13 TeV collected in full Run 2
- Higher branching ratio
- top spin info ~100 % transmitted to downtype quarks → hard to identify
- Higher p_T cut for single lepton (30 GeV) and for 4 jets (30 GeV) \rightarrow lower efficiency at the threshold but OK for high $m_{t\bar{t}}$
- Better m_{tt̄} resolution → good for differential measurement
- Advantage for high $m_{t\bar{t}}$
 - high entanglement
 - mostly space-like separated events

Dilepton vs lepton+jets top quark reconstruction $b/e^{t}\mu^{t}\tau^{t}}$

- $g \underbrace{00000}_{\overline{t}} \underbrace{W^{+}}_{W^{+}} \underbrace{e_{\tau}^{+} \mu_{\tau}^{+} \tau^{+}}_{\overline{v}_{e}, v_{\mu}, v_{\tau}} \underbrace{e_{\tau}^{-} \mu_{\tau}^{-} \tau^{-}}_{\overline{v}_{e}, \overline{v}_{\mu}, \overline{v}_{\tau}}$
- $m_{\ell b}$ weighting method
 - use algebraic method to solve for neutrino 3-vectors
 - pick solution with smallest $m_{t\bar{t}}$
 - pair lepton and jet according to expected $m_{\ell b}$

- Artificial NN
 - goal = correctly identify detector-level objects and up/down jet assignment
 - NN trained on permutations
- For each event:
 - provide all possible permutations of objects as input to NN
 - use permutation resulting in the highest NN score
 - calculate neutrino momentum with W boson mass constraint

$$(p_\nu + p_l)^2 = m_W^2$$

Dilepton analysis

Dilepton analysis: strategy

- The degree of entanglement is highly phase space-dependent
 - scan of $\cos \Theta$ vs $m_{t\bar{t}}$ to determine most sensitive phase space while minimizing expected total uncertainties
- Focus on low-mass region ($345 < m_{t\bar{t}} < 400$ GeV) to increase entanglement

e; μ; τ+

W

W

Dilepton analysis: strategy

et μt τ*

W

W

- The degree of entanglement is highly phase space-dependent
 - scan of $\cos \Theta$ vs $m_{t\bar{t}}$ to determine most sensitive phase space while minimizing expected total uncertainties
- Focus on low-mass region ($345 < m_{t\bar{t}} < 400$ GeV) to increase entanglement
- Cut on velocity along the beam line of the tt system to increase $gg/q\bar{q}$ fraction:

Dilepton analysis: strategy

- The degree of entanglement is highly phase space-dependent
 - scan of $\cos \Theta$ vs $m_{t\bar{t}}$ to determine most sensitive phase space while minimizing expected total uncertainties
- Focus on low-mass region ($345 < m_{t\bar{t}} < 400$ GeV) to increase entanglement
- Cut on velocity along the beam line of the tt system to increase $gg/q\bar{q}$ fraction:

Aguilar-Saavedra, Casas <u>arXiv:2205.00542</u>

$$\beta = |\frac{p_z^t + p_z^t}{E^t + E^{\bar{t}}}| < 0.9$$

- Measure helicity angle $\cos \varphi = \hat{\ell}_1 \cdot \hat{\ell}_2$
 - fully encapsulates spin correlations information for gg
- Perform a profile maximum likelihood fit of the $\cos \varphi$ distribution in the $m_{t\bar{t}}$ β signal region

Signal model

- PowhegBox+Pythia8 (NLO) as nominal tt sample
 - inclusion of EWK corrections at NLO with HATHOR Comput. Phys. Commun. 182 (2011) 10
 - reweighting to NNLO QCD calculations <u>PRL 127 (2021) 062001</u>
 - p_T reweighting to match the top quark p_T spectrum from a fixed order ME calculation at NNLO
- Main background sources:
 - Z+jets (MG5_aMC@NLO + data-driven corrections)
 - single top (Powheg MC)
 - diboson (Pythia8 MC)

Extraction of entanglement proxy

- The entanglement proxy *D* is extracted with a template fit
 - all systematic effects included as nuisance parameters
- Variations of D outside of SM needed to model variation of entanglement

Dilepton results

- Result of the binned profile likelihood fit of the $\cos \phi$ distribution
 - ~47500 signal candidates
- Good agreement with SM predictions

Dilepton results

• Scan of the $-2\Delta lnL$ distribution yields D at parton level, accounting for all detector effects

Threshold region

- Mis-modeling at a level of ~10% seen for $m_{t\bar{t}}$ ~345 GeV ($m_{e\mu}$ < 50 GeV)
- Consistent between dilepton and lepton+jets analyses in both CMS and ATLAS

Threshold region

W. Ju, G. Wang, et al. JHEP 06, 158

- NRQCD contributions close to threshold
 - toponium: predicted top quark-antiquark quasi-bound state with a mass of 343 GeV and a width of 7 GeV
- Excess seen could come from toponium ?

Threshold region

33

W. Ju, G. Wang, et al. JHEP 06, 158

- NRQCD contributions close to threshold
 - **toponium:** predicted top quark-antiquark quasi-bound state with a mass of 343 GeV and a width of 7 GeV
- Excess seen could come from toponium?
- It affects the invariant mass distribution and the spin correlations at threshold

\rightarrow inclusion of toponium (η_t) contributions in our signal model

Signal model

- Combined signal model: $t\overline{t}$ + toponium (η_t)
 - PowhegBox+Pythia8 (NLO) as nominal tt sample
 - toponium model generated with MG5 aMC@NLO(LO)+Pythia8
 B. Fuks et al.

Phys Rev D 104 034023

- $337 < m_{\eta_t} < 349 \; {\rm GeV}$
- only pseudoscalar colour singlet and spin-0 η_t state accounted for
- η_t improves data modeling in the threshold region

Dilepton: systematic uncertainties

- Same uncertainties considered in 2016 spin corr analysis + additional ones for toponium:
 - toponium cross section varied by 50% due to missing octet contributions
 - binding energy uncertainty varied by ±0.5 GeV
- Leading theory-based uncertainties:
 - Toponium normalization
 - NNLO QCD reweighing
 - Parton Shower
- Leading experimental uncertainties:
 - Jet energy scale

Dilepton results with η_t

• Scan of the $-2\Delta lnL$ distribution yields D at parton level, accounting for all detector effects

CMS 36.3 fb⁻¹ (13 TeV) -2Δ In L $D_{obs} = -0.480^{+0.016}_{-0.017}(\text{stat})^{+0.020}_{-0.023}(\text{syst})$ $\begin{array}{c|c} {\rm 30} & m({\rm t\bar{t}}) < 400 \ {\rm GeV} \\ & \beta_{\rm z}({\rm t\bar{t}}) < 0.9 \end{array}$ $D_{exp} = -0.467^{+0.016}_{-0.017}(\text{stat})^{+0.021}_{-0.024}(\text{syst})$ 25 20 • Significance: 5.1 σ obs (4.7 σ exp.) $D_{\text{exp.}} = -0.467^{+0.026}_{-0.029}$ $15 D_{\text{obs.}} = -0.480^{+0.026}_{-0.029}$ **Reduction of significance but** 10 observation > 5 σ ! With $\eta_{\rm t}$ Expected Separable Observed Observed stat. 0 -0.8 -0.7 -0.5 -0.6 -0.4 -0.3

D

Dilepton results - summary

- Good agreement with SM predictions
 - significantly improved with η_t inclusion
 - ~1.5 σ with the expectation if toponium is not included

Lepton + jets analysis

- Evaluation of full correlation matrix C and polarization vectors P
- + measurement of D, \tilde{D}
 - inclusive + differential measurements in bins of $m_{t\bar{t}}$, $|\cos\theta|$, $p_T(t)$
- PowhegBox+Pythia8 (NLO) as nominal $t\overline{t}$ sample
 - inclusion of EWK corrections at NLO with HATHOR Comput. Phys. Commun. 182 (2011) 10

39

- reweighting to NNLO QCD calculations PRL 127 (2021) 062001
 - NN-based reweighting to match NNLO distributions at reconstruction level
- Main background sources:
 - single top quark
 - DY+jets

- W+jets
- QCD multijet production

- Artificial NN used to reconstruct the $t\bar{t}$ system in each event
- Remove events with NN score S_{NN} <0.1
 - due to the low fraction of correctly reconstructed events and the large contribution of background processes
- Events divided into categories based on lepton flavor, number of b-tags, and NN score

- Artificial NN used to reconstruct the $t\bar{t}$ system in each event
- Remove events with NN score S_{NN} <0.1
 - due to the low fraction of correctly reconstructed events and the large contribution of background processes
- Events divided into categories based on lepton flavor, number of b-tags, and NN score
- 50% correct jet assignment (including correct d-type quark) in 2b Shigh region
- All polarization and spin correlation coefficients extracted simultaneously by performing a binned maximum likelihood fit to the data

Fraction of events reconstructed with correctly assigned jets to partons including d-type quark

• The total cross section is a linear combination of Σ_m templates with P and C coefficients Q_m :

$$\Sigma_{tot} = \Sigma_0 + \Sigma_{m=1}^{15} Q_m \Sigma_m$$

 $\Sigma_m = \sigma_{norm} \{ \sin \theta_p \cos \phi_p, \sin \theta_p \sin \phi_p, \dots, \cos \theta_p \cos \theta_{\bar{p}} \}$

 Q_m can be extracted by fitting Σ_{tot}

• Events are reweighted at the generator level

$$w_m = \frac{\Sigma_m}{\Sigma_{tot}}$$

 $\mathbf{\nabla}$

• To minimize bias due to variations of T_m within a bin, measurements are performed in sufficiently small bins

42

Lepton+jets: fit

 q_d

- Maximum likelihood fit combining information of the four categories: (2b, 1b) x (Shigh, Slow)
- $\cos \chi$ distribution is fit to the **reconstruction-level templates** in each $(m_{t\bar{t}}, |\cos \theta|)$ bin

Lepton+jets results: full matrix

- Full measurement of P and C performed inclusively and differentially
- Good agreement with SM prediction

Inclusive from $m_{t\bar{t}}$ vs $|\cos \theta|$

Lepton+jets: entanglement

• Entanglement observed for first time in space-like separated events!

Lepton+jets: entanglement

Lepton+jets: entanglement

Excluding classical explanation

- Fraction of events with space-like separation increases with $m_{t\bar{t}}$
- What is the maximum value of Δ_E that can still be explained by non-quantum communication ($v \le c$)?
 - time-like separated events: $\Delta E \max = 3$ ($C_{ii} = 1$)
 - space-like separated events: ∆E sep = 1
- The boundary of critical entanglement ($\Delta_E critical$) is defined for a given fraction f of space-like separated events as:

$$\Delta_{\rm E\,crit} = f \Delta_{\rm E\,sep} + (1 - f) \Delta_{\rm E\,max}$$

Maltoni, Severi, et al. arXiv:2110.10112v2

Excluding classical explanation

- Fraction of events with space-like separation increases with $m_{t\bar{t}}$
- What is the maximum value of Δ_E that can still be explained by non-quantum communication ($v \le c$)?
 - time-like separated events: $\Delta E \max = 3$ ($C_{ii} = 1$)
 - space-like separated events: $\Delta E \text{ sep} = 1$
- The boundary of critical entanglement ($\Delta_E critical$) is defined for a given fraction f of space-like separated events as:

$$\Delta_{\rm E\,crit} = f \Delta_{\rm E\,sep} + (1 - f) \Delta_{\rm E\,max}$$

Observed Δ_E exceeds Δ_E critical by >5 σ

→ level of observed entanglement cannot be explained by classical exchange of information between the two particles !

Outlook

- This is just the beginning...
- Threshold region
 - potential to probe toponium
- High mass region
 - potential for observation of Bell's Inequality violation
- Bl expressed by Clauser, Horne, Simony, Holt (CHSH) inequality = measurements a, a' and b, b' on subsystems A and B must classically satisfy:

$$\left|\langle ab\rangle - \langle ab'\rangle + \langle a'b\rangle + \langle a'b'\rangle\right| \le 2$$

• For $t\overline{t}$ system it can be written in terms of C matrix as

$$C(a_1, b_1) - C(a_1, b_2) + C(a_2, b_1) + C(a_2, b_2) \le 2$$

• or more simply as:

$$\sqrt{2} \left| -C_{rr} + C_{nn} \right| \le 2$$

- Expected to happen at even higher $m_{t\bar{t}}$
 - more statistics is needed to measure it

Conclusions

- First observation of entanglement between top quarks with CMS data in dilepton analysis
- Even in presence of a "toponium" bound state, we confirm the existence of entanglement in the tt system with > 5 σ
- A better modeling next to the production threshold is required
 → theory community is working on improving the prediction of
 mainstream generators for precision measurements

• First observation of entanglement between casually separated top quarks in lepton+jets analysis

We observe more entanglement than what is achievable by classical exchange of information

Spin correlations: Phys. Rev. D 100 (2019) 072002 basis of spin quantization axes

- B and C coefficients:
 - functions of \sqrt{s} and of the top quark scattering angle
 - written in terms of **orthonormal basis** $\{\hat{k}, \hat{r}, \hat{n}\}$:
 - helicity \hat{k} -axis: top quark direction in ttbar rest frame
 - transverse \hat{n} -axis: transverse to production (ttbar scattering) plane

$$\hat{n} = \frac{sign(cos\Theta)}{sin\Theta}(\hat{p} \times \hat{k})$$

r-axis: orthogonal to the other 2 axes (normal to k in ttbar scattering plane)

 $\hat{r} = \frac{sign(cos\Theta)}{sin\Theta}(\hat{p} - \hat{k}cos\Theta)$

- \hat{p} = direction of the incoming parton, i.e. direction of the proton beam (z-direction in the laboratory frame)
- Θ = top quark scattering angle in ttbar rest frame

Dilepton: event selection

- = 2 oppositely charged isolated leptons (ee, eµ and μµ)
 - including also leptons from tau decays (different from 2016 analysis)
 - p_T > 25(20) GeV, for leading(trailing) lepton and $|\eta|$ < 2.4
 - reject events with $m_{\ell\bar{\ell}}$ < 20 GeV
 - single lepton + dilepton triggers
- ≥ 2 jets (R=0.4), >=1 b jet
 - p_T > 30 GeV and $|\eta|$ < 2.4
 - jet cleaning: $\Delta R(\ell, jet) > 0.4$
- ee, µµ channels:
 - E_{miss}^T > 40 GeV
 - Z veto: $|m_Z m_{\ell \bar{\ell}}| > 15 \text{ GeV}$
- Top quark reconstruction with $m_{\ell b}$ weighting method
 - take solution with smallest $m_{t\bar{t}}$

Dilepon: top quark reconstruction

- Use algebraic method to solve for neutrino 3-vectors
- Results in quartic equation for neutrino momenta
- Pick solution with lowest $m_{t\bar{t}}$
- Repeat process 100x for leptons and b jets smeared within resolution
- Weight solutions by the $m_{\ell b}$ distribution

$$0 = \sum_{i=0}^{4} c_i(m_t, p_{\ell^+}, p_{\ell^-}, p_b, p_{\bar{b}}) p_{\mathbf{x}}(\bar{v})^i$$

$$\begin{split} m_{W^+}^2 &= (E_{\ell^+} + E_{\nu})^2 - (p_{\ell_x^+} + p_{\nu_x})^2, \\ &- (p_{\ell_y^+} + p_{\nu_y})^2 - (p_{\ell_z^+} + p_{\nu_z})^2, \\ m_{W^-}^2 &= (E_{\ell^-} + E_{\bar{\nu}})^2 - (p_{\ell_x^-} + p_{\bar{\nu}_x})^2, \\ &- (p_{\ell_y^-} + p_{\bar{\nu}_y})^2 - (p_{\ell_z^-} + p_{\bar{\nu}_z})^2, \\ m_t^2 &= (E_b + E_{\ell^+} + E_{\nu})^2 - (p_{b_x} + p_{\ell_x^+} + p_{\nu_x})^2, \\ &- (p_{b_y} + p_{\ell_y^+} + p_{\nu_y})^2 - (p_{b_z} + p_{\ell_z^+} + p_{\bar{\nu}_z})^2, \\ m_{\bar{t}}^2 &= (E_{\bar{b}} + E_{\ell^-} + E_{\bar{\nu}})^2 - (p_{\bar{b}_x} + p_{\ell_x^-} + p_{\bar{\nu}_x})^2, \\ &- (p_{\bar{b}_y} + p_{\ell_y^-} + p_{\bar{\nu}_y})^2 - (p_{\bar{b}_z} + p_{\ell_x^-} + p_{\bar{\nu}_z})^2, \end{split}$$

Mixtures of SC and noSC

- In order to have templates implementing an alternative value of the entanglement proxy D, we employ the noSC sample and "mix" it in steps ranging from -100% to 100% with the combined signal model SM template
- The negative mixtures are created mirroring the corresponding positive mixtures around the 0% noSC mixture, i.e., the nominal combined signal model
- Any particular mixture of combined SC and noSC signal corresponds to a certain value of D at the parton level by means of calculating a 2-bin asymmetry:

 $A_D = (N(\cos \varphi > 0) - N(\cos \varphi < 0)) / (N(\cos \varphi > 0) + N(\cos \varphi < 0))$

yields *D* as $-2 \cdot A_D$, with *N* always being the sum of $t\bar{t}$ and η_t .

Comparison with ATLAS

- Entanglement in top quark observed by both ATLAS and CMS with >5 standard deviations!
 - despite different analyses...

	ATLAS	CMS	
Dataset	Full Run 2 (140 fb ⁻¹)	2016 (35.9 fb ⁻¹)	
tī decay	Dilepton: eµ	Dilepton: ee, eµ and µµ	
tt reconstruction	Ellipse method	Weighting method	
Main selections	340 < m(tīt) < 380 GeV	345 < m(tīt) < 400 GeV, beta < 0.9	
Triggers	Single lepton	Single lepton + dilepton	
Corrected to	Particle-level	Parton-level	
Fit type	No fit, calibration curve	Profile likelihood template fit	
Alternative hypothesis D	Reweighting	Mixing samples with/without spin corr	
Threshold effects	Neglected	Considered (toponium contribution)	
Nominal MC	PowhegBox+Pythia8	PowhegBox+Pythia8	
Alternative MC	PowhegBox+Herwig7, bb4l	PowhegBox+Herwig++, MG5_AMC@NLO	
Significance	>> 5 standard deviations	> 5 standard deviations	

 $D_{obs} = -0.547 \pm 0.002(\text{stat}) \pm 0.021(\text{syst})$ $D_{exp} = -0.470 \pm 0.002(\text{stat}) \pm 0.018(\text{syst})$

 $D_{obs} = -0.480^{+0.016}_{-0.017} (\text{stat})^{+0.020}_{-0.023} (\text{syst})$

 $D_{exp} = -0.467^{+0.016}_{-0.017}(\text{stat})^{+0.021}_{-0.024}(\text{syst})$

Comparison with ATLAS

- No clear preference for a specific MC prediction •
- Both analyses are dominated by systematic uncertainty

from parton to particle-level

- total (stat.) unc. is an order of magnitude larger in the CMS analysis
- total (syst.) unc. is similar between ATLAS & CMS, but different systematics are considered

CMS: limit of D = -1/3is shown at parton-level

36.3 fb⁻¹ (13 TeV)

Separable

-0.30

D

-0.35

 $m(t\bar{t}) < 400 \text{ GeV}$

 $\beta_z(t\bar{t}) < 0.9$

-0.40

Lepton + jets: event selection

For muons: $p_T > 30$ GeV and $|\eta| < 2.4$ (tracker coverage). Standard tight selection. Isolated if particle-flow (PF) isolation $I_{PF}/p_T(\mu) < 0.15$ For electrons: $p_T > 30$ GeV for 2016, 2017 ($p_T > 34$ GeV for 2018). $|\eta| < 2.4$. Tight selection.

- · Exactly one electron or muon per event.
- Events with more than one isolated lepton satisfying p_T > 15 GeV and |η| < 2.4 are discarded.
- At least 4 jets using the anti-k_T jet algorithm with a distance parameter of 0.4 (AK4s), with p_T > 30 GeV and |η| < 2.4.
- · DeepJet b-tagging algorithm is used for the identification of b jets. Information about the b-tagging WPs provided to the neural network.
 - Two categories defined by b-tagging criteria are used: two b-jet candidates passing the medium WP criterion (2b) and only one b-jet candidate passing the medium WP criteria (1b).
- To enhance fraction of correctly reconstructed events and reduce background contributions
 - $|m(t_l) 172.5 \text{ GeV}| < 50 \text{ GeV}$
 - $|m(t_h) 172.5 \text{ GeV}| < 50 \text{ GeV}$
 - |m(W) 80.4 GeV| < 30 GeV

- At generator level, Σ_m never change because they do not depend on the kinematics of the top quarks
 - calculation of Σ_{tot} uses the average values of Q_{m} in each bin
- At detector level, T_m change as a function of top quark kinematics due to selection requirements and detector effects
 - if they vary significantly within a fitted bin, the measured Q_m could be biased
- To mitigate this effect, measurements are performed in sufficiently small bins such that either Q_m or T_m are approximately constant within each bin

 $L\Sigma_m$ = templates used at gen level T_m = templates defined at reco level

Lepton+jets: syst. uncertainties

- Analysis is limited by statistical uncertainties
- Leading theoretical uncertainties:
 - top quark mass
 - renormalization/factorization scale
 - NNLO QCD reweighing
 - EW corrections
 - NB: toponium effect is small for lepton+jets (~5E-04)
- Leading experimental uncertainties:
 - Jet energy scale
 - b-tagging efficiency

Lepton+jets results: full matrix

- Full measurement of P and C performed inclusively and differentially
 - in bins of $m_{t\bar{t}}$ vs $|\cos\theta|$ or $p_T(t)$ vs $|\cos\theta|$

Lepton+jets results: D and \tilde{D}

- Measurement of D, \tilde{D} performed inclusively and differentially in bins of $m_{t\bar{t}}$ vs $|\cos \theta|$ or $p_T(t)$ vs $|\cos \theta|$
- Good agreement with SM prediction

Coeff.	Data	powheg+P8	powheg+H7	MG5+P8	MINNLO+P8
	Inclusive from $m(t\bar{t})vs. \cos(\theta) $ binning				
С	0.905 ± 0.061	1	1	1	1
D	$\textbf{-0.209} \pm 0.011$	-0.2222	-0.2092	-0.2251	-0.226
	Inclusive from $p_{\rm T}(t)vs. \cos(\theta) $ binning				
С	0.973 ± 0.056	1	1.0002	0.999	1.0006
D	-0.2233 ± 0.0098	-0.2222	-0.2092	-0.2251	-0.226
	Inclusive from $m(t\bar{t})vs. \cos(\theta) $ binning				
С	0.918 ± 0.062	1	1	1	1
Ũ	-0.0172 ± 0.0077	-0.0113	-0.0063	-0.0136	-0.018
Inclusive from $p_{\rm T}(t)vs. \cos(\theta) $ binning					
С	0.949 ± 0.055	1	1.0002	0.999	1.0006
- <i>D</i>	-0.0289 ± 0.0066	-0.0113	-0.0063	-0.0136	-0.018

Coeff.	Data	powheg+P8	powheg+H7	MG5+P8	MINNLO+P8	
	$300 < m(t\bar{t}) < 400 \text{GeV}$					
С	0.934 ± 0.067	1	1.0058	0.9318	1.0045	
D	$\textbf{-0.382}\pm0.030$	-0.4179	-0.3843	-0.4434	-0.4311	
$400 < m(t\bar{t}) < 600 \text{GeV}$						
С	0.890 ± 0.060	1	0.9998	1.0045	0.9957	
D	$\textbf{-0.191} \pm 0.012$	-0.2121	-0.2015	-0.2157	-0.2118	
$600 < m(t\bar{t}) < 800 \text{GeV}$						
С	0.906 ± 0.064	1	0.9955	1.0427	1.0015	
D	$\textbf{-0.102}\pm0.020$	-0.0705	-0.0687	-0.0729	-0.0717	
$m(t\bar{t}) > 800 \text{GeV}$						
С	0.930 ± 0.070	1	0.9926	1.0689	1.0186	
D	$\textbf{-0.010} \pm 0.036$	0.0019	-0.0005	-0.0007	-0.0123	

Inclusive D, \tilde{D} measurements

D measurements in $m_{t\bar{t}}$ bins