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Magnetic monopoles and the classical physics

2

Duality: E ⟺ B



Magnetic monopoles and charge quantisation

3

• Dirac (1931): the existence of  
magnetic monopole would  
explain charge quantization


• Can be seen by considering a static system of an electric and a magnetic 
monopoles separated by a distance r 

• System possesses angular momentum 

• Quantization of angular momentum → charge quantization


• Dirac monopole = point-like particle (GUT monopoles etc. are composite objects)

• Monopole mass and spin are not theoretically fixed

or



Recent monopole searches at the LHC (pp)
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MoEDAL Collaboration, arXiv:2311.06509

• Both searches use production modelled by Drell-Yan or γγ-fusion pair production

• Derived from ee scattering using naive substitution αEM → αMM

• But: large γ-MM coupling constant αMM ~ 1/(4αEM) ≈ 34 → no perturbative expansion!

ATLAS, JHEP 11 (2023) 112

complementary 
detection techniques



Magnetic monopoles in heavy-ion collisions
• LHC Pb+Pb collisions @ 5.02 TeV → peak B ~ 1016 T 
• ~104 greater than strongest known astrophysical magnetic fields (Magnetars) 
• Occurs at distances (impact parameter) b ~ 2R (twice the nuclear radius)

5
MoEDAL,  Nature, 602 (2022) 63

≫
Credit: ESO/L. Calçada



Magnetic monopoles in heavy-ion collisions
• Production via the Schwinger mechanism in strong  

magnetic fields

• Analogy to originally described spontaneous creation of  

e+e- pairs in presence of ultra-strong electric field 

• Advantages over pp searches:

• Cross-sections calculated using semiclassical techniques  
→ do not suffer from non-perturbative nature of coupling


• Composite monopoles enhance the cross section

• No exponential suppression (e-4/α ~ 10-236) for composite monopole models  

[see Drukier & Nussinov, Phys. Rev. Lett. 49 (1982) 102] 
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[Gould, Ho, Rajantie, PRD 100, 015041 (2019), PRD 104, 015033 (2021)]
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Monopole searches in LHC heavy-ion collisions
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MoEDAL MMT detectors exposed to  
0.235/nb of Run-2 Pb+Pb (IP8) data

MoEDAL,  Nature, 602 (2022) 63

MoEDAL,  arXiv:2402.15682

MoEDAL probes CMS  
Run-1 beam pipe



LHC as a photon collider
• Boosted nuclei are intense source of EM fields 

• Ultraperipheral collisions (UPC)

• b > 2R 
• Hadronic interactions strongly suppressed  

• EM fields 

• Treated as quasi-real photon fluxes 

• Small virtuality Q < 1/R ~ 30 MeV 

• Proportional to Z2
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INTRODUCTION

QUASI-REAL PHOTONS FROM LEAD-NUCLEI

�4

Photon and Gluon Induced Processes 507 

Chapter 2 

Equivalent Photon Approximation 

A nucleus moving at nearly the speed of light has almost transverse electromagnetic fields; the electric 
and magnetic fields have the same absolute value and are perpendicular to each other. Therefore an 
observer can not distinguish between these transverse electromagnetic fields and an equivalent swarm 
of photons, see Fig-S.1 Equating the energy flux of the electromagnetic fields through a transverse plane 
with the energy content of the equivalent photon swarm yields the equivalent photon distribution n(w), 
which tells how many photons with frequency w do occur. This derivation is presented in the first 
Subsection. 

v=o 

Figure 2.1: Fermis idea leading to the Equivalent Photon Approximation: As the velocity of the charge ap 
proaches the speed of light, its electromagnetic field becomes Lore&-contracted (b) and similar 
to a parallel-moving photon-cloud (c). 

This is already the idea of the Equivalent Photon Approximation. It has been first developed by 
E. Fermi [57]. Often this method is also called Weizsiicker-Williams-Method as E. J. Williams [I351 
and C. F. v. Weizsicker [134] independently extended Fermis idea. A good review of results and various 
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Probing small x parton densities in ultraperipheral AA and
pA collisions at the LHC

Mark Strikman∗

Pennsylvania State University, University Park, PA 16802, USA

Ramona Vogt†
Department of Physics, University of California, Davis, CA 95616, USA

and Nuclear Science Division LBNL, Berkeley, CA 94720, USA

Sebastian White‡
Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: January 6, 2014)

We calculate production rates for several hard processes in ultraperipheral proton-nucleus and nucleus-
nucleus collisions at the LHC. The resulting high rates demonstrate that some key directions in small x research
proposed for HERA will be accessible at the LHC through these ultraperipheral processes. Indeed, these mea-
surements can extend the HERA x range by roughly a factor of 10 for similar virtualities. Nonlinear effects on
the parton densities will thus be significantly more important in these collisions than at HERA.

PACS numbers:

Studies of small x deep inelastic scattering at HERA
substantially improved our understanding of strong in-
teractions at high energies. Among the key findings of
HERA were the direct observation of the rapid growth
of the small x structure functions over a wide range
of virtualities, Q2, and the observation of a significant
probability for hard diffraction consistent with approx-
imate scaling and a logarithmic Q2 dependence (“lead-
ing twist” dominance). HERA also established a new
class of hard exclusive processes – high Q2 vector me-
son production – described by the QCD factorization
theorem and related to generalized parton distributions
in nucleons.

The importance of nonlinear QCD dynamics at small
x is one of the focal points of theoretical activity (see
e.g. Ref. [1]). Analyses suggest that the strength of
the interactions, especially when a hard probe directly
couples to gluons, approaches the maximum possible
strength – the black disk limit – for Q2 ≤ 4 GeV2.
These values are relatively small, with an even smaller
Q2 for coupling to quarks, Q2 ∼ 1 GeV2, making it
difficult to separate perturbative and nonperturbative
effects at small x and Q2. Possible new directions
for further experimental investigation of this regime in-
clude higher energies, nuclear beams and studies of the
longitudinal virtual photon cross section, σL. The latter
two options were discussed for HERA [2, 3]. Unfor-
tunately, it now seems that HERA will stop operating
in two years with no further measurements along these
lines except perhaps of σL. One might therefore expect
that experimental investigations in this direction would
end during the next decade.

The purpose of this letter is to demonstrate that sev-
eral of the crucial directions of HERA research can be

continued and extended by studies of ultraperipheral
heavy ion collisions (UPCs) at the LHC. UPCs are in-
teractions of two heavy nuclei (or a proton and a nu-
cleus) in which a nucleus emits a quasi-real photon
that interacts with the other nucleus (or proton). These
collisions have the distinct feature that the photon-
emitting nucleus either does not break up or only emits
a few neutrons through Coulomb excitation, leaving a
substantial rapidity gap in the same direction. These
kinematics can be readily identified by the hermetic
LHC detectors, ATLAS and CMS. In this paper we
consider the feasibility of studies in two of the direc-
tions pioneered at HERA: parton densities and hard
diffraction. The third, quarkonium production, was dis-
cussed previously [4, 5, 6]. It was shown that pA and
AA scattering can extend the energy range of HERA,
characterized by √

sγN , by about a factor of 10 and,
in particular, investigate the onset of color opacity for
quarkonium photoproduction.
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FIG. 1: Diagram of dijet production by photon-gluon fusion
where the photon carries momentum fraction x1 while the
gluon carries momentum fraction x2.
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Fig. 1. Lowest order Feynman diagrams for exclusive photoproduction of (a) J/ψ and (b) dielectrons, in ultra-peripheral Au + Au collisions. The photons to the right of the
dashed line are soft photons that may excite the nuclei but do not lead to particle production in the central rapidity region. Both diagrams contain at least one photon and
occur when the nuclei are separated by impact parameters larger than the sum of the nuclear radii.

18X0) and two sectors of lead-glass Čerenkov calorimeter (PbGl,
9216 modules with 4 cm × 4 cm × 40 cm, 14.4X0), at a radial dis-
tance of ∼ 5 m from the beam line.

The ultra-peripheral Au + Au events were tagged by neutron
detection at small forward angles in the ZDC. The ZDCs [31,32] are
hadronic calorimeters placed 18 m up- and down-stream of the
interaction point that measure the energy of the neutrons coming
from the Au⋆ Coulomb dissociation with ∼ 20% energy resolution
and cover |θ | < 2 mrad, which is a very forward region.3

The events used in this analysis were collected with the UPC
trigger set up for the first time in PHENIX during the 2004 run
with the following characteristics:

(1) A veto on coincident signals in both Beam–Beam Coun-
ters (BBC, covering 3.0 < |η| < 3.9 and full azimuth) selects
exclusive-type events characterised by a large rapidity gap on
either side of the central arm.

(2) The EMCal-Trigger (ERT) with a 2×2 tile threshold at 0.8 GeV.
The trigger is set if the analog sum of the energy deposit in a
2×2 tile of calorimeter towers is above threshold (0.8 GeV).

(3) At least 30 GeV energy deposited in one or both of the ZDCs is
required to select Au + Au events with forward neutron emis-
sion (Xn) from the (single or double) Au⋆ decay.

The BBC trigger efficiency for hadronic Au + Au collisions is
92 ± 3% [33]. A veto on the BBC trigger has an inefficiency of 8%,
which implies that the most peripheral nuclear reactions could be
a potential background for our UPC measurement if they happen
to have an electron pair in the final state. An extrapolation of the
measured p–p dielectron rate [34] at minv > 2 GeV/c2 to the 8%
most peripheral interactions – scaled by the corresponding number
of nucleon–nucleon collisions (1.6) – results in a negligible contri-
bution (only 0.4 e+e− pairs). On the other hand, the ERT trigger
requirement (2) has an efficiency of 90 ± 10%, and the require-
ment (3) of minimum ZDC energy deposit(s) leaves about 55% of
the coherent and about 100% of the incoherent J/psi events, as dis-
cussed above. All these trigger efficiencies and their uncertainties
are used in the final determination of the production cross sections
below.

The total number of events collected by the UPC trigger was
8.5 M, of which 6.7 M satisfied standard data quality assurance
criteria. The useable event sample corresponds to an integrated lu-
minosity Lint = 141 ± 12 µb−1 computed from the minimum bias
triggered events.

3 Much larger than the crossing angle of Au beams at the PHENIX interaction
point (0.2 mrad).

3. Data analysis

Charged particle tracking in the PHENIX central arms is based
on a combinatorial Hough transform in the track bend plane (per-
pendicular to the beam direction). The polar angle is determined
from the position of the track in the PC outside the DC and the
reconstructed position of the collision vertex [35]. For central colli-
sions, the collision vertex is reconstructed from timing information
from the BBC and/or ZDC. This does not work for UPC events,
which, by definition, do not have BBC coincidences and often do
not have ZDC coincidences. The event vertex was instead recon-
structed from the position of the PC hits and EMCal clusters as-
sociated with the tracks in the event. This gave an event vertex
resolution in the longitudinal direction of 1 cm. Track momenta
are measured with a resolution δp/p ≈ 0.7% ⊕ 1.0%p[GeV/c] in
minimum bias Au + Au nuclear collisions [36]. Only a negligible
reduction in the resolution is expected in this analysis because of
the different vertex resolution.

The following global cuts were applied to enhance the sample
of genuine γ -induced events:

(1) A standard offline vertex cut |vtxz| < 30 cm was required to
select collisions well centered in the fiducial area of the central
detectors and to avoid tracks close to the magnet poles.

(2) Only events with two charged particles were analyzed. This is
a restrictive criterion imposed to cleanly select “exclusive” pro-
cesses characterised by only two isolated particles (electrons)
in the final state. It allows to suppress the contamination of
non-UPC (mainly beam–gas and peripheral nuclear) reactions
that fired the UPC trigger, whereas the signal loss is small (less
than 5%).

Unlike the J/ψ → e+e− analyses in nuclear Au + Au reactions
[36,37] which have to deal with large particle multiplicities, we
did not need to apply very strict electron identification cuts in the
clean UPC environment. Instead, the following RICH- and EMCal-
based offline cuts were used:

(1) RICH multiplicity n0 !2 selects e± which fire 2 or more tubes
around the track within the nominal ring radius.

(2) Candidate tracks with an associated EMCal cluster with dead
or noisy towers within a 2 × 2 tile are excluded.

(3) At least one of the tracks in the pair is required to pass an
EMCal cluster energy cut (E1 > 1 GeV ∥ E2 > 1 GeV) to select
candidate e± in the plateau region above the turn-on curve of
the ERT trigger (which has a 0.8 GeV threshold).

Beyond those global or single-track cuts, an additional “coherent”
identification cut was applied by selecting only those e+e− candi-

Photon-pomeron:  
production of vector mesons  
(sensitivity to nPDF)

Photo-nuclear:  
jet photoproduction  
(probe nPDF directly)

Photon-photon:  
dilepton, diphoton!  
(& other exclusive states)

Experiments at RHIC & LHC have begun a systematic investigation of UPC, including:

• Boosted nuclei are intense source of quasi-real photons 

• Typically treated using EPA (Weiszacker-Williams) 

• Quantize classical field  

• Photons with E≾(ℏc/R)γ are produced coherently (Z2) 

• Up to ~80 GeV for Pb+Pb @ 5.02 TeV, 1.4 TeV for p+p!
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Observing light-by-light scattering at the Large Hadron Collider

David d’Enterria1 and Gustavo G. Silveira2

1CERN, PH Department, 1211 Geneva, Switzerland
2UC Louvain, Center for Particle Physics and Phenomenology (CP3), Louvain-la-Neuve, Belgium

Elastic light-by-light scattering (γ γ → γ γ) is open to study at the Large Hadron Collider thanks to
the large quasi-real photon fluxes available in electromagnetic interactions of protons (p) and lead
(Pb) ions. The γ γ → γ γ cross sections for diphoton masses mγγ > 5 GeV amount to 105 fb, 260 pb,
and 370 nb in p-p, p-Pb, and Pb-Pb collisions at nucleon-nucleon center-of-mass energies

√
s
NN

= 14
TeV, 8.8 TeV, and 5.5 TeV respectively. Such a measurement has no substantial backgrounds in
Pb-Pb collisions where one expects about 70 signal events per run, after typical detector acceptance
and reconstruction efficiency selections.

PACS numbers: 12.20.-m, 13.40.-f, 14.70.-e, 25.20.Lj

Introduction. – The elastic scattering of two photons in vacuum (γ γ → γ γ) is a pure quantum-mechanical
process that proceeds at leading order in the fine structure constant, O(α4), via virtual one-loop box diagrams
containing charged particles (Fig. 1). Although light-by-light (LbyL) scattering via an electron loop has been
precisely, albeit indirectly, tested in the measurements of the anomalous magnetic moment of the electron [1]
and muon [2], its direct observation in the laboratory remains elusive still today. Out of the two closely-related
processes –photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [3] and photon-splitting in
a strong magnetic field (“vacuum” birefringence) [4, 5]– only the former has been clearly observed [6]. Several
experimental approaches have been proposed to directly detect γ γ → γ γ in the laboratory using e.g. Compton-
backscattered photons against laser photons [7], collisions of photons from microwave waveguides or cavities [8] or
high-power lasers [9, 10], as well as at photon colliders [11, 12] where energetic photon beams can be obtained by
Compton-backscattering laser-light off electron-positron (e+e−) beams [13]. Despite its fundamental simplicity, no
observation of the process exists so far.

In the present letter we investigate the novel possibility to detect elastic photon-photon scattering using the
large (quasi-real) photon fluxes of the protons and ions accelerated at TeV energies at the CERN Large Hadron
Collider (LHC). In the standard model (SM), the box diagram depicted in Fig. 1 involves charged fermions (leptons
and quarks) and boson (W±) loops. In extensions of the SM, extra virtual contributions from new heavy charged
particles are also possible. The study of the γ γ → γ γ process –in particular at the high invariant masses reachable
at photon colliders– has thus been proposed as a particularly neat channel to study anomalous gauge-couplings [11,
12], new possible contributions from charged supersymmetric partners of SM particles [14], monopoles [15], and
unparticles [16], as well as low-scale gravity effects [17, 18] and non-commutative interactions [19].

γ

γ

γ

γ

p,Pb

p,Pb

p,Pb

p,Pb

FIG. 1: Schematic diagram of elastic γ γ → γ γ collisions in electromagnetic proton and/or ion interactions at the LHC. The
initial-state photons are emitted coherently by the protons and/or nuclei which survive the electromagnetic interaction.

Photon-photon collisions in “ultraperipheral” collisions of proton [20, 21] and lead (Pb) beams [22] have been
experimentally observed at the LHC [23–27]. All charges accelerated at high energies generate electromagnetic
fields which, in the equivalent photon approximation (EPA) [28], can be considered as γ beams [29]. The
emitted photons are almost on mass shell, with virtuality −Q2 < 1/R2, where R is the radius of the charge,
i.e. Q2 ≈ 0.08 GeV2 for protons with R ≈ 0.7 fm, and Q2 < 4·10−3 GeV2 for nuclei with RA ≈ 1.2A1/3 fm,
for mass number A > 16. Naively, the photon-photon luminosities are suppressed by a factor α2 ≈ 5·10−5 and

UPC reviews: 

Baltz et al., Phys. Rept. 458 (2008) 1-171; Klein & Steinberg, Ann. Rev. Nuclear Part. Sci. 70 (2020) 323

Fermi, Nuovo Cim. 2 (1925) 143
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Phys. Rev. C. 104 (2021) 014903

ATLAS-CONF-2023-059

Characterizing (high-multiplicity) 
photonuclear interactions

ATLAS-CONF-2022-021
Hard-scale photonuclear collisions with jets

Nucleus intact 
No neutrons

Nucleus breaks up 
Multiple neutrons

Rapidity 
gap

No rapidity 
gap

UPC MEASUREMENTS
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have zero neutrons in one direction and one or more neutrons in the opposite direction, referred to as the
“0nXn” event topology. The photon-going direction is defined to be the direction in which zero neutrons
are observed. Background events are removed by requiring a minimum rapidity gap in this direction
and requiring that there is no large gap in the opposite direction. Corrections are applied to account
for signal events removed by these requirements, and thus they are not part of the fiducial definition
of the measurement. Event-level observables are constructed from all jets having transverse momenta
pT > 15 GeV and pseudo-rapidities |⌘ | < 4.4. Events are required to have two or more such jets and at
least one jet with pT > 20 GeV. The jets are used to define the event-level variables:
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where i runs over the measured jets in an event, E and ~p represent jet energies and momentum vectors,
respectively, and pz represents the longitudinal component of the jet momenta. The signs of pz are chosen
to be positive in the photon-going direction. A further requirement is imposed that the jet-system mass,
mjets, satisfies mjets > 35 GeV.

The di�erential cross-sections are measured as a function of HT and

z� ⌘
mjetsp

s
e
+yjets , xA ⌘

mjetsp
s

e
�yjets . (2)

In the limit of 2! 2 scattering kinematics, xA corresponds to the ratio of the energy of the struck parton
in the nucleus to the (per nucleon) beam energy. z� = x� y, where y is the energy fraction carried by the
photon. For direct processes, x� is unity, while for resolved events, it is the fraction of the photon’s energy
carried by the resolved parton entering the hard scattering.

The remainder of this note is structured as follows: Section 2 describes the ATLAS detector and the
triggers used for the measurements in this analysis. Section 3 describes the data and Monte Carlo (MC)
samples used in the analysis and provides information on how the MC sample obtained from P�����
is re-weighted for use in Pb+Pb collisions. Section 5 describes all aspects of the data analysis and the
measurement of the photo-nuclear dijet production cross-sections. Section 6 discusses the evaluation of
the systematic uncertainties, and Section 7 discusses possible backgrounds to the measurement. Section 8
presents the final results figures with comparison to Monte Carlo and theory. Section 9 summarizes this
note and provides conclusions.

2 ATLAS detector

The measurements described in this note are performed using the ATLAS detector [18] in the Run 2
configuration. They rely on the calorimeter system, the inner detector, the zero degree calorimeters,
and the trigger system. The calorimeters, which cover the pseudo-rapidity range |⌘ | < 4.91, are used
for measuring the jets and for the rapidity gap analysis. The inner detector is used to measure charged
particle tracks over |⌘ | < 2.5. The zero degree calorimeters (ZDCs), which measure neutrons emitted at
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector

and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle ✓ as ⌘ = � ln tan(✓/2).
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Excellent agreement with PYTHIA6 reweighed to STARLIGHT

jet variables:
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F-2017-011
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• Precision QED studies with γγ → ee / μμ / τ τ production

• Measured also in non-UPC events by ATLAS [Phys. Rev. C 107 (2023) 054907]

Phys. Rev. C 104 (2021) 024906
JHEP 06 (2023) 182

Phys. Rev. Lett. 131 (2023) 151802
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• Series of light-by-light scattering (γγ → γγ) measurements

• Incl. analysis interpretations for specific BSM scenario (ALPs) Phys. Rev. Lett. 123 (2019) 052001

Nature Phys. 13 (2017) 852

JHEP 03 (2021) 243
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Experimental considerations
• UPC = Rapidity gaps, exclusive final states → veto requirements are essential

• Many sub-detectors available in ATLAS (|eta|<4.9)


• (Absence of) ion breakup tagged with Zero Degree Calorimeters (ZDC)

13



ATLAS ZDC Run3 performance

14

LUMI-2023-09



ZDC UPC categories
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0n0n 0nXn XnXn

(~10% events @ mX=30 GeV)(~30% events @ mX=30 GeV)(~60% events @ mX=30 GeV)



ZDC UPC categories
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0n0n 0nXn XnXn

(~10%** events @ mX=30 GeV)
(~30% events @ mX=30 GeV)(~60% events @ mX=30 GeV)

primary signal category 
for this search*

**fraction of XnXn events increases with central system mass mX

*mainly due to trigger limitations (empty events @ L1)



EM breakup modeling
• Models of EM breakup fractions use parameterisations  

based on low-energy photonuclear scattering data

• Significant contribution from Giant Dipole Resonanace (GDR)

• Models can describe LHC data at ~20% level

17

SuperChic 4.2 MC (Harland-Lang et al.)  
EPJC 79 (2019) 1, 39


PRD 107 (2023) 9, 093004



Monopole interactions in the detector
• Energy loss

• Ionization dominates 

• For g=1gD and β~1: (dE/dx)MM ≈ 5000 (dE/dx)MIP 

• Highly ionising particle (HIP)  
→ lots of δ-rays near trajectory


• Slow monopoles → less ionisation


• Equations of motions

• Monopoles accelerated by magnetic field 

• Trajectory bends in r-z plane (straight in r-φ)

18

De Roeck et al., EPJC 72 (2012) 1985

Ahlen, Phys. Rev. D 17 (1978) 229



The ATLAS Inner Detector (ID)

19



Low-energy monopole interactions in ATLAS

20

• Simulated pairs of monopoles in UPC (each w/ m=20 GeV)

• Large activity in the Pixel detector  
• Monopoles with pT <~30 GeV typically do not reach SCT

monopole pT = 20 GeV

Longitudinal detector view

Transverse view (Pixel detector only)

beampipe
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• Simulated pairs of monopoles in UPC (each w/ m=20 GeV)

• Large activity in the Pixel detector  
• Monopoles with pT <~30 GeV typically do not reach SCT

pT = 20 GeV

Longitudinal detector view
Transverse view (Pixel detector only)

Low-energy monopole interactions in ATLAS

monopole pT = 50 GeV



Low-energy monopole interactions in ATLAS

22

• Simulated pairs of monopoles in UPC (each w/ m=20 GeV)

• Large activity in the Pixel detector  
• Monopoles with pT <~30 GeV typically do not reach SCT 

• Monopoles with pT <~300 GeV do not reach calorimeter 

pT = 20 GeV

pT = 50 GeV

Longitudinal detector view

Transverse view (Pixel detector only)

monopole pT = 280 GeV



Data set and trigger

23

• Use 0.262/nb of 2023 Pb+Pb data at 5.36 TeV 

• Signal trigger 

• L1: coincidence of ZDC A+C signals + veto on total transverse energy in calo (ET<10 GeV)

• HLT: > 100 Pixel clusters w/o any specific  

tracking selection

• 1.7/nb → 0.262/nb due to enormous rate from  

mutual EM dissociation (L1 trigger prescale) 

• Supporting trigger (for background  
estimation):

• ZDC signal exactly on one side (ZDC_XOR) 

plus remaining selections as for the signal trigger



Signal simulation
• Use predictions based on the semiclassical model

• Free Particle Approximation (FPA)  

[Gould, Ho, Rajantie, PRD 100, 015041 (2019), PRD 104, 015033 (2021)]

• Monopole coupling with initial magnetic fields treated exactly (up to all orders); 

neglecting possible monopole self-interactions

• Monopole kinematics based on simplified model with back-to-back  

monopole production and sampled momentum:

• Same model as used by MoEDAL

• Exploring only g=1gD 

• Detector simulation

• Benefits from previous ATLAS pp searches

• Includes descriptions of monopole acceleration in the detector magnetic field, ionization 

energy losses in matter and 𝛿-electron production along the monopole trajectory
24



Event properties

25

Events in data after trigger selection Simulated signal events

Beam-induced background

Collision  
events



Beam induced background (BIB) characteristics

26

ATLAS, JINST 8 (2013) P07004

BIB particles largely deflected in the horizontal plane  
by LHC magnets

Fake jets from OOT energy deposits



Event selection

27

• Ntracks ≤ 1


• Ntopoclusters ≤ 1


• NPixelClusters >150, including NIBLclusters > 50 
→ suppress BIB


• Fraction of Pixel clusters from a single module, 
 fleading-module<0.9  
→ to suppress events from noisy modules

(BIB-enriched region)

to remove collision bkg



Event selection

28

• Final background-discriminating variable  
based on azimuthal correlations between  
Pixel clusters

• Variable inspired by transverse thrust used: 

 
 
 

• Require T>0.95 (SR definition)


• Signal efficiency varies from  
4% (m=20 GeV) to 0.2% (m=150 GeV)



• Define two CRs: 

• CR1 for events having T<0.87

• CR2 from ZDC_XOR-triggered events with 1-3 (soft) topoclusters, incl. at least one out-of 

time (t<-10 ns) 

• CR2 sample is enriched with BIB events and so 

 
 

• Extra reweighting of SCT spacepoint distribution  
(regulates average radial range of BIB particles) 
in CR2 for improved background  modeling 


• SR (T>0.95): 4 ± 4 bkg. events expected

Background estimation

29

Background shape from CR2



CR1 control distributions

30



Validation region (VR)
• Formed using events close to the SR (0.87<T<0.95) 

31



XnXn correction

32

• Signal model has no EM breakup embedded → correcting signal MC for XnXn requirement applied in data


• Breakup model based on SuperChic 4.2 MC for γγ → l+l- process is used


• Full model also takes into account:


• EM pileup (outflow of events primarily from 0nXn class to XnXn)


• Run-2 UPC γγ → l+l- data/MC comparison


• possible incoherent contribution to the signal
Model validated against γγ → ee (μμ) Run-3 data



Systematic uncertainties
• Dominant source: bkg uncertainty (stat.) 

• Also important: detector material modeling 

• Using alternative Geant4 geometries with  

+5% overall Inner Detector (ID), 
+10% IBL,  
+25% services


• Variations capture the full range of data-MC  
differences observed in dedicated studies of  
the ID material [ATLAS, JINST 12 (2017) P12009] 

• Combined effect on the signal varies from 
4% (low masses) to 28% (highest mass)

33



Systematic uncertainties

34

• XnXn weight modelling (20%) 
• Covers data/MC differences observed for γγ → l+l- production 
and differences between nominal (SuperChic) and alternative models (STARlight, gamma-UPC) 

• Other sources considered (subdominant)

• Pixel and calorimeter noise modeling

• δ-electrons propagation range  

• δ-electrons production modeling

• Integrated luminosity

• Background shape systematics



Results
• 3 events in SR, consistent with  

background estimate (4 ± 4)

• Cross-section upper limits  

for 20 < m < 150 GeV and  
assuming the FPA model 


• Better sensitivity compared to  
MoEDAL 


• Excluded magnetic monopoles 
with mass < 120 GeV 
(assuming FPA, g=1gD)

35



Future directions
• Trigger improvements → more data! 

• Possible future analysis developments

• Explore higher magnetic charges

• MVA methods

• Unconventional tracking

• …

36



Summary

37

• The first ATLAS result using Run-3 Pb+Pb data and the first ATLAS search for 
MM in Pb+Pb collisions  
 


• Analysis relying on non-perturbative FPA model, used previously by MoEDAL

•  Enable to calculate physically valid monopole production cross sections 

• Introducing new approach in detecting HIPs at the LHC

• Main focus on the Pixel detector activity  

• ZDC crucial in data selection (L1 trigger)

• Best cross-section upper limits for UPC-produced MM for masses 20-150 GeV (g = 1gD)   

• This new approach can be extended for other HIP searches in HI data



Backup

38



EM breakup fractions

39



Systematic uncertainties
• δ-electrons propagation range  

• Low energy δ-electrons evolution simulated only down to some kinetic energy threshold 

• Change from 0.05 to 0.01 mm  

• Less than 3% effect 

• δ-electrons production modeling 

• dE/dx formulas for ionisation by monopoles have ±3% uncertainty in analysis kinematic 

region 

• Reducing δ-electrons production rate by 3% in the simulation

• About 2-5% signal yield reduction

40



Signal model

41



Ultraperipheral collisions at the LHC
• Boosted nuclei are intense source of quasi-real photons

• Coherent photon flux

• Emax ≾ γ/R ~ 80 GeV @LHC (~3 GeV @RHIC)

• Q ~ 1/R ~ 30 MeV @ LHC/RHIC

• Each photon flux scales with ~Z2 

• Various types of interactions possible:

42

INTRODUCTION

QUASI-REAL PHOTONS FROM LEAD-NUCLEI

�4

Photon and Gluon Induced Processes 507 

Chapter 2 

Equivalent Photon Approximation 

A nucleus moving at nearly the speed of light has almost transverse electromagnetic fields; the electric 
and magnetic fields have the same absolute value and are perpendicular to each other. Therefore an 
observer can not distinguish between these transverse electromagnetic fields and an equivalent swarm 
of photons, see Fig-S.1 Equating the energy flux of the electromagnetic fields through a transverse plane 
with the energy content of the equivalent photon swarm yields the equivalent photon distribution n(w), 
which tells how many photons with frequency w do occur. This derivation is presented in the first 
Subsection. 

v=o 

Figure 2.1: Fermis idea leading to the Equivalent Photon Approximation: As the velocity of the charge ap 
proaches the speed of light, its electromagnetic field becomes Lore&-contracted (b) and similar 
to a parallel-moving photon-cloud (c). 

This is already the idea of the Equivalent Photon Approximation. It has been first developed by 
E. Fermi [57]. Often this method is also called Weizsiicker-Williams-Method as E. J. Williams [I351 
and C. F. v. Weizsicker [134] independently extended Fermis idea. A good review of results and various 
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Probing small x parton densities in ultraperipheral AA and
pA collisions at the LHC

Mark Strikman∗
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Sebastian White‡
Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: January 6, 2014)

We calculate production rates for several hard processes in ultraperipheral proton-nucleus and nucleus-
nucleus collisions at the LHC. The resulting high rates demonstrate that some key directions in small x research
proposed for HERA will be accessible at the LHC through these ultraperipheral processes. Indeed, these mea-
surements can extend the HERA x range by roughly a factor of 10 for similar virtualities. Nonlinear effects on
the parton densities will thus be significantly more important in these collisions than at HERA.

PACS numbers:

Studies of small x deep inelastic scattering at HERA
substantially improved our understanding of strong in-
teractions at high energies. Among the key findings of
HERA were the direct observation of the rapid growth
of the small x structure functions over a wide range
of virtualities, Q2, and the observation of a significant
probability for hard diffraction consistent with approx-
imate scaling and a logarithmic Q2 dependence (“lead-
ing twist” dominance). HERA also established a new
class of hard exclusive processes – high Q2 vector me-
son production – described by the QCD factorization
theorem and related to generalized parton distributions
in nucleons.

The importance of nonlinear QCD dynamics at small
x is one of the focal points of theoretical activity (see
e.g. Ref. [1]). Analyses suggest that the strength of
the interactions, especially when a hard probe directly
couples to gluons, approaches the maximum possible
strength – the black disk limit – for Q2 ≤ 4 GeV2.
These values are relatively small, with an even smaller
Q2 for coupling to quarks, Q2 ∼ 1 GeV2, making it
difficult to separate perturbative and nonperturbative
effects at small x and Q2. Possible new directions
for further experimental investigation of this regime in-
clude higher energies, nuclear beams and studies of the
longitudinal virtual photon cross section, σL. The latter
two options were discussed for HERA [2, 3]. Unfor-
tunately, it now seems that HERA will stop operating
in two years with no further measurements along these
lines except perhaps of σL. One might therefore expect
that experimental investigations in this direction would
end during the next decade.

The purpose of this letter is to demonstrate that sev-
eral of the crucial directions of HERA research can be

continued and extended by studies of ultraperipheral
heavy ion collisions (UPCs) at the LHC. UPCs are in-
teractions of two heavy nuclei (or a proton and a nu-
cleus) in which a nucleus emits a quasi-real photon
that interacts with the other nucleus (or proton). These
collisions have the distinct feature that the photon-
emitting nucleus either does not break up or only emits
a few neutrons through Coulomb excitation, leaving a
substantial rapidity gap in the same direction. These
kinematics can be readily identified by the hermetic
LHC detectors, ATLAS and CMS. In this paper we
consider the feasibility of studies in two of the direc-
tions pioneered at HERA: parton densities and hard
diffraction. The third, quarkonium production, was dis-
cussed previously [4, 5, 6]. It was shown that pA and
AA scattering can extend the energy range of HERA,
characterized by √

sγN , by about a factor of 10 and,
in particular, investigate the onset of color opacity for
quarkonium photoproduction.

p
   

T

A

A

x

x1

2

p
   
T

−

FIG. 1: Diagram of dijet production by photon-gluon fusion
where the photon carries momentum fraction x1 while the
gluon carries momentum fraction x2.

k1

k2

Pb

Pb

Pb

µ+

µ−

Pb

1

324 PHENIX Collaboration / Physics Letters B 679 (2009) 321–329

(a) (b)

Fig. 1. Lowest order Feynman diagrams for exclusive photoproduction of (a) J/ψ and (b) dielectrons, in ultra-peripheral Au + Au collisions. The photons to the right of the
dashed line are soft photons that may excite the nuclei but do not lead to particle production in the central rapidity region. Both diagrams contain at least one photon and
occur when the nuclei are separated by impact parameters larger than the sum of the nuclear radii.

18X0) and two sectors of lead-glass Čerenkov calorimeter (PbGl,
9216 modules with 4 cm × 4 cm × 40 cm, 14.4X0), at a radial dis-
tance of ∼ 5 m from the beam line.

The ultra-peripheral Au + Au events were tagged by neutron
detection at small forward angles in the ZDC. The ZDCs [31,32] are
hadronic calorimeters placed 18 m up- and down-stream of the
interaction point that measure the energy of the neutrons coming
from the Au⋆ Coulomb dissociation with ∼ 20% energy resolution
and cover |θ | < 2 mrad, which is a very forward region.3

The events used in this analysis were collected with the UPC
trigger set up for the first time in PHENIX during the 2004 run
with the following characteristics:

(1) A veto on coincident signals in both Beam–Beam Coun-
ters (BBC, covering 3.0 < |η| < 3.9 and full azimuth) selects
exclusive-type events characterised by a large rapidity gap on
either side of the central arm.

(2) The EMCal-Trigger (ERT) with a 2×2 tile threshold at 0.8 GeV.
The trigger is set if the analog sum of the energy deposit in a
2×2 tile of calorimeter towers is above threshold (0.8 GeV).

(3) At least 30 GeV energy deposited in one or both of the ZDCs is
required to select Au + Au events with forward neutron emis-
sion (Xn) from the (single or double) Au⋆ decay.

The BBC trigger efficiency for hadronic Au + Au collisions is
92 ± 3% [33]. A veto on the BBC trigger has an inefficiency of 8%,
which implies that the most peripheral nuclear reactions could be
a potential background for our UPC measurement if they happen
to have an electron pair in the final state. An extrapolation of the
measured p–p dielectron rate [34] at minv > 2 GeV/c2 to the 8%
most peripheral interactions – scaled by the corresponding number
of nucleon–nucleon collisions (1.6) – results in a negligible contri-
bution (only 0.4 e+e− pairs). On the other hand, the ERT trigger
requirement (2) has an efficiency of 90 ± 10%, and the require-
ment (3) of minimum ZDC energy deposit(s) leaves about 55% of
the coherent and about 100% of the incoherent J/psi events, as dis-
cussed above. All these trigger efficiencies and their uncertainties
are used in the final determination of the production cross sections
below.

The total number of events collected by the UPC trigger was
8.5 M, of which 6.7 M satisfied standard data quality assurance
criteria. The useable event sample corresponds to an integrated lu-
minosity Lint = 141 ± 12 µb−1 computed from the minimum bias
triggered events.

3 Much larger than the crossing angle of Au beams at the PHENIX interaction
point (0.2 mrad).

3. Data analysis

Charged particle tracking in the PHENIX central arms is based
on a combinatorial Hough transform in the track bend plane (per-
pendicular to the beam direction). The polar angle is determined
from the position of the track in the PC outside the DC and the
reconstructed position of the collision vertex [35]. For central colli-
sions, the collision vertex is reconstructed from timing information
from the BBC and/or ZDC. This does not work for UPC events,
which, by definition, do not have BBC coincidences and often do
not have ZDC coincidences. The event vertex was instead recon-
structed from the position of the PC hits and EMCal clusters as-
sociated with the tracks in the event. This gave an event vertex
resolution in the longitudinal direction of 1 cm. Track momenta
are measured with a resolution δp/p ≈ 0.7% ⊕ 1.0%p[GeV/c] in
minimum bias Au + Au nuclear collisions [36]. Only a negligible
reduction in the resolution is expected in this analysis because of
the different vertex resolution.

The following global cuts were applied to enhance the sample
of genuine γ -induced events:

(1) A standard offline vertex cut |vtxz| < 30 cm was required to
select collisions well centered in the fiducial area of the central
detectors and to avoid tracks close to the magnet poles.

(2) Only events with two charged particles were analyzed. This is
a restrictive criterion imposed to cleanly select “exclusive” pro-
cesses characterised by only two isolated particles (electrons)
in the final state. It allows to suppress the contamination of
non-UPC (mainly beam–gas and peripheral nuclear) reactions
that fired the UPC trigger, whereas the signal loss is small (less
than 5%).

Unlike the J/ψ → e+e− analyses in nuclear Au + Au reactions
[36,37] which have to deal with large particle multiplicities, we
did not need to apply very strict electron identification cuts in the
clean UPC environment. Instead, the following RICH- and EMCal-
based offline cuts were used:

(1) RICH multiplicity n0 !2 selects e± which fire 2 or more tubes
around the track within the nominal ring radius.

(2) Candidate tracks with an associated EMCal cluster with dead
or noisy towers within a 2 × 2 tile are excluded.

(3) At least one of the tracks in the pair is required to pass an
EMCal cluster energy cut (E1 > 1 GeV ∥ E2 > 1 GeV) to select
candidate e± in the plateau region above the turn-on curve of
the ERT trigger (which has a 0.8 GeV threshold).

Beyond those global or single-track cuts, an additional “coherent”
identification cut was applied by selecting only those e+e− candi-

Photon-pomeron:  
production of vector mesons  
(sensitivity to nPDF)

Photo-nuclear:  
jet photoproduction  
(probe nPDF directly)

Photon-photon:  
dilepton, diphoton!  
(& other exclusive states)

Experiments at RHIC & LHC have begun a systematic investigation of UPC, including:

• Boosted nuclei are intense source of quasi-real photons 

• Typically treated using EPA (Weiszacker-Williams) 

• Quantize classical field  

• Photons with E≾(ℏc/R)γ are produced coherently (Z2) 

• Up to ~80 GeV for Pb+Pb @ 5.02 TeV, 1.4 TeV for p+p!
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Observing light-by-light scattering at the Large Hadron Collider

David d’Enterria1 and Gustavo G. Silveira2

1CERN, PH Department, 1211 Geneva, Switzerland
2UC Louvain, Center for Particle Physics and Phenomenology (CP3), Louvain-la-Neuve, Belgium

Elastic light-by-light scattering (γ γ → γ γ) is open to study at the Large Hadron Collider thanks to
the large quasi-real photon fluxes available in electromagnetic interactions of protons (p) and lead
(Pb) ions. The γ γ → γ γ cross sections for diphoton masses mγγ > 5 GeV amount to 105 fb, 260 pb,
and 370 nb in p-p, p-Pb, and Pb-Pb collisions at nucleon-nucleon center-of-mass energies

√
s
NN

= 14
TeV, 8.8 TeV, and 5.5 TeV respectively. Such a measurement has no substantial backgrounds in
Pb-Pb collisions where one expects about 70 signal events per run, after typical detector acceptance
and reconstruction efficiency selections.

PACS numbers: 12.20.-m, 13.40.-f, 14.70.-e, 25.20.Lj

Introduction. – The elastic scattering of two photons in vacuum (γ γ → γ γ) is a pure quantum-mechanical
process that proceeds at leading order in the fine structure constant, O(α4), via virtual one-loop box diagrams
containing charged particles (Fig. 1). Although light-by-light (LbyL) scattering via an electron loop has been
precisely, albeit indirectly, tested in the measurements of the anomalous magnetic moment of the electron [1]
and muon [2], its direct observation in the laboratory remains elusive still today. Out of the two closely-related
processes –photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [3] and photon-splitting in
a strong magnetic field (“vacuum” birefringence) [4, 5]– only the former has been clearly observed [6]. Several
experimental approaches have been proposed to directly detect γ γ → γ γ in the laboratory using e.g. Compton-
backscattered photons against laser photons [7], collisions of photons from microwave waveguides or cavities [8] or
high-power lasers [9, 10], as well as at photon colliders [11, 12] where energetic photon beams can be obtained by
Compton-backscattering laser-light off electron-positron (e+e−) beams [13]. Despite its fundamental simplicity, no
observation of the process exists so far.

In the present letter we investigate the novel possibility to detect elastic photon-photon scattering using the
large (quasi-real) photon fluxes of the protons and ions accelerated at TeV energies at the CERN Large Hadron
Collider (LHC). In the standard model (SM), the box diagram depicted in Fig. 1 involves charged fermions (leptons
and quarks) and boson (W±) loops. In extensions of the SM, extra virtual contributions from new heavy charged
particles are also possible. The study of the γ γ → γ γ process –in particular at the high invariant masses reachable
at photon colliders– has thus been proposed as a particularly neat channel to study anomalous gauge-couplings [11,
12], new possible contributions from charged supersymmetric partners of SM particles [14], monopoles [15], and
unparticles [16], as well as low-scale gravity effects [17, 18] and non-commutative interactions [19].

γ

γ

γ

γ

p,Pb

p,Pb

p,Pb

p,Pb

FIG. 1: Schematic diagram of elastic γ γ → γ γ collisions in electromagnetic proton and/or ion interactions at the LHC. The
initial-state photons are emitted coherently by the protons and/or nuclei which survive the electromagnetic interaction.

Photon-photon collisions in “ultraperipheral” collisions of proton [20, 21] and lead (Pb) beams [22] have been
experimentally observed at the LHC [23–27]. All charges accelerated at high energies generate electromagnetic
fields which, in the equivalent photon approximation (EPA) [28], can be considered as γ beams [29]. The
emitted photons are almost on mass shell, with virtuality −Q2 < 1/R2, where R is the radius of the charge,
i.e. Q2 ≈ 0.08 GeV2 for protons with R ≈ 0.7 fm, and Q2 < 4·10−3 GeV2 for nuclei with RA ≈ 1.2A1/3 fm,
for mass number A > 16. Naively, the photon-photon luminosities are suppressed by a factor α2 ≈ 5·10−5 and
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have zero neutrons in one direction and one or more neutrons in the opposite direction, referred to as the
“0nXn” event topology. The photon-going direction is defined to be the direction in which zero neutrons
are observed. Background events are removed by requiring a minimum rapidity gap in this direction
and requiring that there is no large gap in the opposite direction. Corrections are applied to account
for signal events removed by these requirements, and thus they are not part of the fiducial definition
of the measurement. Event-level observables are constructed from all jets having transverse momenta
pT > 15 GeV and pseudo-rapidities |⌘ | < 4.4. Events are required to have two or more such jets and at
least one jet with pT > 20 GeV. The jets are used to define the event-level variables:
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, (1)

where i runs over the measured jets in an event, E and ~p represent jet energies and momentum vectors,
respectively, and pz represents the longitudinal component of the jet momenta. The signs of pz are chosen
to be positive in the photon-going direction. A further requirement is imposed that the jet-system mass,
mjets, satisfies mjets > 35 GeV.

The di�erential cross-sections are measured as a function of HT and

z� ⌘
mjetsp

s
e
+yjets , xA ⌘

mjetsp
s

e
�yjets . (2)

In the limit of 2! 2 scattering kinematics, xA corresponds to the ratio of the energy of the struck parton
in the nucleus to the (per nucleon) beam energy. z� = x� y, where y is the energy fraction carried by the
photon. For direct processes, x� is unity, while for resolved events, it is the fraction of the photon’s energy
carried by the resolved parton entering the hard scattering.

The remainder of this note is structured as follows: Section 2 describes the ATLAS detector and the
triggers used for the measurements in this analysis. Section 3 describes the data and Monte Carlo (MC)
samples used in the analysis and provides information on how the MC sample obtained from P�����
is re-weighted for use in Pb+Pb collisions. Section 5 describes all aspects of the data analysis and the
measurement of the photo-nuclear dijet production cross-sections. Section 6 discusses the evaluation of
the systematic uncertainties, and Section 7 discusses possible backgrounds to the measurement. Section 8
presents the final results figures with comparison to Monte Carlo and theory. Section 9 summarizes this
note and provides conclusions.

2 ATLAS detector

The measurements described in this note are performed using the ATLAS detector [18] in the Run 2
configuration. They rely on the calorimeter system, the inner detector, the zero degree calorimeters,
and the trigger system. The calorimeters, which cover the pseudo-rapidity range |⌘ | < 4.91, are used
for measuring the jets and for the rapidity gap analysis. The inner detector is used to measure charged
particle tracks over |⌘ | < 2.5. The zero degree calorimeters (ZDCs), which measure neutrons emitted at
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector

and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle ✓ as ⌘ = � ln tan(✓/2).
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have zero neutrons in one direction and one or more neutrons in the opposite direction, referred to as the
“0nXn” event topology. The photon-going direction is defined to be the direction in which zero neutrons
are observed. Background events are removed by requiring a minimum rapidity gap in this direction
and requiring that there is no large gap in the opposite direction. Corrections are applied to account
for signal events removed by these requirements, and thus they are not part of the fiducial definition
of the measurement. Event-level observables are constructed from all jets having transverse momenta
pT > 15 GeV and pseudo-rapidities |⌘ | < 4.4. Events are required to have two or more such jets and at
least one jet with pT > 20 GeV. The jets are used to define the event-level variables:
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where i runs over the measured jets in an event, E and ~p represent jet energies and momentum vectors,
respectively, and pz represents the longitudinal component of the jet momenta. The signs of pz are chosen
to be positive in the photon-going direction. A further requirement is imposed that the jet-system mass,
mjets, satisfies mjets > 35 GeV.

The di�erential cross-sections are measured as a function of HT and

z� ⌘
mjetsp

s
e
+yjets , xA ⌘

mjetsp
s

e
�yjets . (2)

In the limit of 2! 2 scattering kinematics, xA corresponds to the ratio of the energy of the struck parton
in the nucleus to the (per nucleon) beam energy. z� = x� y, where y is the energy fraction carried by the
photon. For direct processes, x� is unity, while for resolved events, it is the fraction of the photon’s energy
carried by the resolved parton entering the hard scattering.

The remainder of this note is structured as follows: Section 2 describes the ATLAS detector and the
triggers used for the measurements in this analysis. Section 3 describes the data and Monte Carlo (MC)
samples used in the analysis and provides information on how the MC sample obtained from P�����
is re-weighted for use in Pb+Pb collisions. Section 5 describes all aspects of the data analysis and the
measurement of the photo-nuclear dijet production cross-sections. Section 6 discusses the evaluation of
the systematic uncertainties, and Section 7 discusses possible backgrounds to the measurement. Section 8
presents the final results figures with comparison to Monte Carlo and theory. Section 9 summarizes this
note and provides conclusions.

2 ATLAS detector

The measurements described in this note are performed using the ATLAS detector [18] in the Run 2
configuration. They rely on the calorimeter system, the inner detector, the zero degree calorimeters,
and the trigger system. The calorimeters, which cover the pseudo-rapidity range |⌘ | < 4.91, are used
for measuring the jets and for the rapidity gap analysis. The inner detector is used to measure charged
particle tracks over |⌘ | < 2.5. The zero degree calorimeters (ZDCs), which measure neutrons emitted at
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector

and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle ✓ as ⌘ = � ln tan(✓/2).
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Excellent agreement with PYTHIA6 reweighed to STARLIGHT

jet variables:
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Future directions
• A wishlist to theory community

• Would be nice to have the non-perturbative calculations embedded in a MC generator

• Could incorporate EM breakup fractions in those calculations

• Better (more realistic) prescription for theoretical uncertainties
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