

Characterization of wakes and impedances in non-ultrarelativistic regime

Elena Macchia, Carlo Zannini, Chiara Antuono

Acknowledgements: Giovanni Rumolo, Elena de la Fuente García

16.05.2024 | CEI Section Meeting

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Outline

Introduction

- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Beam coupling impedance

- The **beam coupling impedance** describes the **interaction of a** particle **beam with the** surrounding **environment**.
- For a device of length *l*, the beam coupling impedance is defined as

$$Z_{\parallel} = -\frac{1}{q_0} \int_0^l E_s \ e^{jks} \ ds$$
$$Z_{x,y} = \frac{j}{q_0} \int_0^l [E_{x,y} - \beta Z_0 H_{y,x}] \ e^{jks} \ ds$$

with $E_{s,x,y}$ and $H_{x,y}$ electric and magnetic induced fields in the frequency domain.

 When β < 1, the induced fields also include the indirect space charge field, which is related to the interaction of the particles among each other due to the external environment:

$$Z_{tot}(\boldsymbol{\beta}) = Z(\boldsymbol{\beta}) + Z^{ISC}(\boldsymbol{\beta})$$

Space charge

- When β < 1, the charged particles of a beam also create self-fields, that lead to the direct space charge effect.
- **Direct space charge** is related only to the interaction of the particles among each other in open space.
- While *indirect space charge* is typically *taken into account* directly *in the impedance model*, the direct space charge impedance has to be removed.

Indirect space charge with material boundaries.

Kevin Li, Collective effects – an introduction

Direct space charge in open space.

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Electromagnetic simulations for non-ultrarelativistic beams

- For ultrarelativistic beams, the reliability of CST electromagnetic simulations has been extensively proved.
- But **CST can't discriminate between the fields** induced by the beam, so the simulated beam coupling impedance of a device under test (DUT) is

$$Z_{DUT}^{tot}(\beta) = Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) + Z^{SC}(\beta)$$

where $Z_{DUT}^{ISC}(\beta)$ is the indirect space charge impedance due to the DUT and $Z^{SC}(\beta)$ is the direct space charge impedance.

- For $\beta = 1$ it results $Z^{SC}(\beta) = 0$ and $Z_{DUT}^{ISC}(\beta) = 0$.
- For non-ultrarelativistic beams, the main complication consists in removing the contribution of the direct space charge of the source bunch.

Simulations of the bounding box

- CST simulations take place within a delimited domain called *bounding box*.
 - Since CST is a numerical solver, it discretizes the domain with a mesh grid.

Simulations of the bounding box

- CST simulations take place within a delimited domain called *bounding box*.
 - Since CST is a numerical solver, it discretizes the domain with a mesh grid.
- The **bounding box** (bb) can be **simulated without changing its discretization**, by excluding all the elements of the DUT from the simulation.
- The resulting beam coupling impedance can be written as

$$Z_{bb}^{tot}(\boldsymbol{\beta}) = Z^{SC}(\boldsymbol{\beta}) + Z_{bb}^{ISC}(\boldsymbol{\beta})$$

where $Z_{bb}^{ISC}(\beta)$ is the indirect space charge impedance of the bounding box.

Numerical cancellation of $Z^{SC}(\beta)^{[1]}$

- Two simulations are run with the same mesh:
 - 1. Simulation of the device under test: $Z_{DUT}^{tot}(\beta) = Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) + Z^{SC}(\beta)$
 - 2. Simulation of the bounding box: $Z_{bb}^{tot}(\beta) = Z^{SC}(\beta) + Z_{bb}^{ISC}(\beta)$

to remove Z^{SC}(β) directly from simulations:

 $Z_{DUT}^{tot}(\beta) - Z_{bb}^{tot}(\beta) = Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) - Z_{bb}^{ISC}(\beta)$

- $Z_{bb}^{ISC}(\beta)$ and $Z_{DUT}^{ISC}(\beta)$ can be analytically calculated and removed.
- This technique can also be applied directly to the wake potential.

^[1] C. Zannini et al., "Electromagnetic simulations for non-ultrarelativistic beams and applications to the CERN low energy machines"

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Resistive wall beam chamber

• The first device that was considered is a resistive chamber of dimensions

a = 30 mmb = 10 mml = 100 mm

- 2b
- The infinitely thick walls are simulated directly through the boundary condition "conducting wall".
- For the wakefield calculation, the direct integration method had to be used, because it is the only one that can also be employed for non-ultrarelativistic beams.

Longitudinal wake potential for $\beta = 1$: comparison between CST simulation and theory

- The accuracy of the simulation in the ultrarelativistic case had to be checked due to the use of the direct integration method.
- In the long range there is a good agreement between the theoretical and simulated longitudinal wake potentials.

Numerical cancellation: longitudinal impedance of a resistive chamber, in the case $\beta = 0.5$

In the case of a resistive chamber with infinitely thick walls, the bounding box is the chamber itself, so $Z_{DUT}^{ISC}(\beta) = Z_{bb}^{ISC}(\beta)$ and we directly obtain $Z_{DUT}^{tot}(\beta) - Z_{bb}^{tot}(\beta) = Z_{DUT}(\beta)$:

Simulations of the resistive chamber (Z_{DUT}^{tot}) and bounding box (Z_{hh}^{tot})

Longitudinal impedance after numerical cancellation: $Z_{DUT}^{tot}(\beta) - Z_{bb}^{tot}(\beta)$

Numerical cancellation: longitudinal wake potential of a resistive chamber, in the case $\beta = 0.5$

The technique can also be applied directly to the wake potential:

Simulations of the resistive chamber (W_{DUT}^{tot}) and bounding box (W_{bb}^{tot})

Longitudinal wake potential **after numerical** cancellation: $W_{DUT}^{tot}(\beta) - W_{bb}^{tot}(\beta)$

Longitudinal wake potential varying β

It can be observed that the longitudinal wake potential scales with $\beta^{\frac{3}{2}}$.

[1] See also <u>D. Quatraro, «Collective effects</u> for the LHC injectors: non-ultrarelativistic approaches»

Longitudinal wake potential varying β : comparison between $\beta = 1$ and $\beta = 0.5$

It can be observed that the longitudinal wake potential scales with $\beta^{\frac{1}{2}}$.

Longitudinal impedance varying β

As expected, the longitudinal impedance doesn't change with β .

Settings for transverse simulations

The **dipolar vertical transverse impedance** was simulated: the **integration path** stays **on axis** while the **beam** is **displaced vertically** with an offset of 20% of the vertical half-aperture.

Transverse wake potential varying β

It can be observed that the transverse wake potential scales with $\beta^{\frac{3}{2}}$.

Transverse wake potential varying β : comparison between $\beta = 1$ and $\beta = 0.5$

It can be observed that the transverse wake potential scales with $\beta^{\frac{1}{2}}$.

Transverse impedance varying β

Even though there are numerical issues, it looks like the transverse impedance scales with β .

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study

• Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers

- Longitudinal impedance
- Transverse impedance
- Conclusions
- Next steps

Pillbox cavity

Radius of the pipe	2 cm
Radius of the pillbox	10 cm
Length of the pipe	20 cm
Length of the pillbox	40 cm

Study of the first two resonant modes:

Numerical cancellation: longitudinal impedance of a pillbox, in the case $\beta = 0.5$

- Im(Z) is the one affected by space charge.
- For a pillbox we get: $\frac{Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) - Z_{bb}^{ISC}(\beta)}{Z_{bb}^{ISC}(\beta)}$

• $Z_{bb}^{ISC}(\beta)$ and $Z_{DUT}^{ISC}(\beta)$ can be analytically calculated and removed.

Numerical cancellation: longitudinal impedance of a pillbox, in the case $\beta = 0.5$

- Im(Z) is the one affected by space charge.
- For a pillbox we get: $Z_{DUT}(\beta) + Z_{DUT}^{ISC}(\beta) - Z_{bb}^{ISC}(\beta)$

• $Z_{bb}^{ISC}(\beta)$ and $Z_{DUT}^{ISC}(\beta)$ can be analytically calculated and removed.

Eigenmode Solver vs Wakefield Solver

- Wakefield Solver (WF): directly provides the **impedance spectrum**.
- Eigenmode Solver (EM): provides three parameters.
 - impedance spectrum reconstructed based on the broad-band resonator model.

1.15 GHz
450
21954 Ω

 $Z(\omega) = \frac{R_s}{1 + jQ\left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right)} \quad \text{broad-band} \\ \text{resonator model}$

Beam coupling impedance varying β

• Parametric study of the real part of the impedance at f_{010} varying β .

- **Good agreement** between the two solvers:
 - Relative error < 5%
- This agreement was not obvious because in the EM solver the particle velocity is taken into account only in post-processing.

Beam coupling impedance varying β: relationship with the Transit Time Factor

0.3

- Study to understand the shape of the curve
 - in particular values of β for which the peak impedance goes to 0.
- It can be explained analytically looking at the transit time factor for the fundamental mode:

 $T \propto rac{\sin(rac{\pi l}{eta\lambda})}{rac{\pi l}{eta\lambda}}$

x 10⁴

Beam impedance varying the pillbox's length

 $T \propto \frac{\sin\left(\frac{\pi l}{\beta \lambda}\right)}{\frac{\pi l}{\beta \lambda}}$

When $l \ll \lambda$, we have $T \rightarrow 1$, so if we reduce the length of the pillbox the last minimum is reached for a lower β .

Peak impedance and $\frac{l}{\beta\lambda}$ varying β for TM₀₁₀ mode

Peak impedance for the second resonant mode

- Also, for the second mode there is good agreement between the two solvers.
 - Relative error < 5%

Peak impedance and $\frac{l}{\beta\lambda}$ varying β for TM₁₁₀ mode

Settings for transverse simulations

The **generalized transverse impedance** was simulated with an offset of 10% of the radius of the pillbox.

- WF Solver: beam and integration path are directly displaced.
- EM Solver: the longitudinal impedance at f_r is calculated at different transverse offsets, with the expectation of obtaining a parabola:

 $Z_{\parallel} = Z_{\parallel,0} + Z_{\parallel,1x} \cdot x_0^2 + Z_{\parallel,1y} \cdot y_0^2$

The **transverse impedance** is computed through to the Panofsky-Wenzel theorem:

$$Z_x^{gen} = \frac{Z_{\parallel,1x}(f_r) \cdot c}{2\pi f_r}$$

with $Z_{\parallel,1x}(f_r)$ from the fit.

Generalized transverse beam impedance varying β and role of the quadrupolar component

Good agreement between the two solvers.

The mode is mainly quadrupolar:

- $\beta = 1$: no radial field dependence
 - $Z_{x,y}^{quad} = \mathbf{0} \rightarrow Z_{x,y}^{gen}$ small
- $\beta < 1$: radial field dependance

•
$$Z_{x,y}^{quad} \neq \mathbf{0} \rightarrow Z_{x,y}^{gen}$$
 higher

Generalized transverse beam impedance varying ß for the second mode

Also, in the second mode there is **good agreement** between the two solvers.

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

Conclusions

- Low-beta simulations are extremely challenging due to a series of factors (mesh convergence, direct integration method, removal of direct space charge, etc.).
- The numerical cancellation technique for the removal from the simulation of the direct space charge contribution was benchmarked with a resistive wall beam chamber:
 - the wake potential, both longitudinal and transverse, scales with $\beta^{\frac{3}{2}}$;
 - the longitudinal impedance doesn't change with β , as expected;
 - the transverse impedance scales with β , as expected.
- Simulations of a **pillbox cavity**:
 - Numerical cancellation has been applied successfully.
 - Good agreement between the Eigenmode Solver and the Wakefield Solver:
 - The non-ultrarelativistic Wakefield simulations are accurate.
 - The **Eigenmode Solver approximation** of adding particle velocity only in post-processing with the transit time factor has been found to be accurate.

Outline

- Introduction
- Simulation technique for non-ultrarelativistic beams
 - Numerical cancellation of the direct space charge
- Simulations of a resistive wall chamber with the Wakefield Solver
 - Longitudinal study
 - Transverse study
- Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
 - Longitudinal impedance
 - Transverse impedance
- Conclusions
- Next steps

- Since the way that CST runs its simulations and the reason behind the numerical issues are not known, using an electromagnetic solver whose implementation is know would be useful: low-beta simulations are going to be run with wakis
 - First user of wakis
- The presented **study** will be applied to the **PSB FINEMET cavities**, whose impedance model can be improved because it currently doesn't account for non-ultrarelativistic beams.

Low-beta simulations with wakis

Courtesy of Elena de la Fuente García

from wakis import GridFIT3D, SolverFIT3D, WakeSolver
import pyvista as pv


```
stl_cavity = 'cavity.stl'
stl_pipe = 'beampipe.stl'
stl_solids = {'cavity': stl_cavity, 'pipe': stl_pipe}
```

Materials

```
stl_materials = {'cavity': 'vacuum', 'pipe': 'vacuum'}
background = [1.0, 1.0, 100] # lossy metal [\varepsilon_r, \mu_r, \sigma]
```

```
# Domain bounds (from stl)
surf = pv.read(stl_cavity) + pv.read(stl_pipe)
xmin, xmax, ymin, ymax, zmin, zmax = surf.bounds
```

Set grid and geometry

# Beam	source
# Beam parameters ar	nd wake obj.
beta = 0.8	<pre># beam relativistic beta</pre>
sigmaz = beta*6e-2	<pre># [m] -> multiplied by beta to have f_max cte</pre>
q = 1e-9	# [C]
xs = ∅.	<pre># x source position [m]</pre>
ys = 0.	<pre># y source position [m]</pre>
xt = 0.	<pre># x test position [m]</pre>
yt = ∅.	<pre># y test position [m]</pre>
<pre># tinj = 8.53*sigmaz</pre>	z/(beta*c) # injection time offset [s]

https://github.com/ImpedanCEI/FITwakis

benchmarks/betacavity/

Simulation of a cylindrical pillbox below cut-off for different relativistic β values.

- Since the way that CST runs its simulations and the reason behind the numerical issues are not known, using an electromagnetic solver whose implementation is know would be useful: low-beta simulations are going to be run with wakis
 - First user of wakis
- The presented **study** will be applied to the **PSB FINEMET cavities**, whose impedance model can be improved because it currently doesn't account for non-ultrarelativistic beams.

Beam coupling impedance simulations of the PSB FINEMET cavities

Study on the FINEMET cavities' realistic 3D model, simplified for electromagnetic simulations:

Thank you for your attention

Backup slides

Longitudinal wake potential: comparison between $\beta = 1$ and $\beta = 0.5$

It can be observed that the longitudinal wake potential scales with $\beta^{\frac{1}{2}}$.

Transverse wake potential: comparison between $\beta = 1$ and $\beta = 0.5$

It can be observed that the longitudinal wake potential scales with $\beta^{\frac{3}{2}}$.

Peak impedance of the second mode varying β: relationship with the Transit Time Factor

 $T \propto \frac{\sin\left(\frac{\pi l}{\beta \lambda}\right)}{\frac{\pi l}{\beta \lambda}}$

- This formula doesn't work for higher order modes.
- Changes in the formula for the other modes are being studied.

Generalized transverse beam impedance varying β and role of the quadrupolar component

$$E_{s}(r,\phi) = Q \sum_{m} A_{m} I_{m} \left(\frac{k_{0}}{\beta \gamma} r\right) \cos(m\phi)$$

$$H_{s}(r,\phi) = \frac{Q}{Z_{0}} \sum_{m} B_{m} I_{m} \left(\frac{k_{0}}{\beta \gamma} r\right) \sin(m\phi)$$
with $Q = j \frac{q_{0}k_{0}Z_{0}}{2\pi\beta^{2}\gamma^{2}}$

$$[1]$$

The mode is mainly quadrupolar:

- $\beta = 1$: no radial field dependence • $Z_{xy}^{quad} = 0 \rightarrow Z_{xy}^{gen}$ small
- $\beta < 1$: radial field dependance • $Z_{x,y}^{quad} \neq 0 \rightarrow Z_{x,y}^{gen}$ higher

1] C. Zannini, "Electromagnetic simulations of a CERN accelerator component and experimental applications"