CE/RW
\

NN/ S

Characterization of
wakes and impedances
In non-ultrarelativistic regime

Elena Macchia, Carlo Zannini, Chiara Antuono

Acknowledgements: Giovanni Rumolo, Elena de la Fuente Garcia
16.05.2024 | CEI Section Meeting



Outline

Introduction
« Simulation technique for non-ultrarelativistic beams
« Numerical cancellation of the direct space charge

« Simulations of a resistive wall chamber with the Wakefield Solver
« Longitudinal study
« Transverse study

« Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers
« Longitudinal impedance
« Transverse impedance

« Conclusions

Next steps

<C\ERNS§? CEl Section Meeting | E. Macchia | Characterization of wakes and impedances in non-ultrarelativistic regime 16 May 2024
N7



Outline

 Introduction

N CEl Section Meeting | E. Macchia | Characterization of wakes and impedances in non-ultrarelativistic regime 16 May 2024



Beam coupling impedance

« The beam coupling impedance describes the interaction of a particle beam with the
surrounding environment.

* For a device of length [, the beam coupling impedance is defined as
l
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with Eg , ,, and H, ,, electric and magnetic induced fields in the frequency domain.

« When g < 1, the induced fields also include the indirect space charge field, which is related
to the interaction of the particles among each other due to the external environment:

Ziot(B) =Z(B) + Z°(B)
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Space charge

« When f# < 1, the charged particles of a beam also create self-fields, that lead to the direct
space charge effect.

« Direct space charge is related only to the interaction of the particles among each other in
open space.

« While indirect space charge is typically taken into account directly in the impedance model,
the direct space charge impedance has to be removed.
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Direct space charge in open space. Indirect space charge with material boundaries.
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Outline

« Simulation technique for non-ultrarelativistic beams
« Numerical cancellation of the direct space charge
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Electromagnetic simulations
for non-ultrarelativistic beams

 For ultrarelativistic beams, the reliability of CST electromagnetic simulations has been
extensively proved.

 But CST can’t discriminate between the fields induced by the beam, so the simulated
beam coupling impedance of a device under test (DUT) is

Z95r(B) = Zpyr(B) + Z55r(B) + Z5€(B)

where Z55-(B) is the indirect space charge impedance due to the DUT and ZS¢(p) is the
direct space charge impedance.

For =1 itresults Z5¢(B) = 0 and Z;5(B) = 0.

For non-ultrarelativistic beams, the main complication consists In removing the
contribution of the direct space charge of the source bunch.
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Simulations of the bounding box

« CST simulations take place within a delimited domain
called bounding box.

e Since CST is a numerical solver, it discretizes the
domain with a mesh grid.
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Simulations of the bounding box

« CST simulations take place within a delimited domain
called bounding box.

e Since CST is a numerical solver it discretizes the
domain with a mesh grid. |

« The bounding box (bb) can be simulated without
changing its discretization, by excluding all the
elements of the DUT from the simulation.

The resulting beam coupling impedance can be written as

2 (B) = Z5C(B) + Z1,  (B)

where Z15¢(B) is the indirect space charge impedance of the bounding box.
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Numerical cancellation of Z5¢(8)

 Two simulations are run with the same mesh:
1. Simulation of the device under test: Z0%(B) = Zpyr(B) + Z55(B) + Z5¢(B)

-

2. Simulation of the bounding box: ZL2°(p) = Z5¢(B) + Z13¢ (B) p 7

to remove Z3¢(B) directly
from simulations: —

Z5ir(B) = Ziyy (B) = Zpyr(B) + Zpyr(B) — Zpy (B)

«  Zp(B) and Z557(B) can be analytically calculated and removed.

 Thistechnique can also be applied directly to the wake potential.

[1] C. Zannini et al., “Electromagnetic simulations for non-ultrarelativistic beams and applications to the CERN low energy machines”
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Outline

« Simulations of a resistive wall chamber with the Wakefield Solver
» Longitudinal study

« Transverse study
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Resistive wall beam chamber

The first device that was considered is a
resistive chamber of dimensions

a=30mm

b=10mm

=100 mm 2b| y
ZLX

The infinitely thick walls are simulated ~—— ——— 40
a

directly through the boundary condition
“conducting wall”.

For the wakefield calculation, the direct integration method had to be used, because it is
the only one that can also be employed for non-ultrarelativistic beams.

CERN i?
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Longitudinal wake potential for g = 1:
comparison between CST simulation and theory

10°

—— CST simulation
e The accuracy of the simulation in 107! = theory
the ultrarelativistic case had to be oot |
checked due to the use of the
direct integration method. ;- 107
;= 1074 5
« In the long range there is a good
agreement between the 107 \_
theoretical and simulated 10| )
longitudinal wake potentials. o
0 250 500 750 1000 1250 1500 1750 2000

s [mm]
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Numerical cancellation: longitudinal impedance of a
resistive chamber, inthecase f# =0.5

In the case of a resistive chamber with infinitely thick walls, the bounding box is the chamber
itself, so Z55(B) = 213X (B) and we directly obtain Z55-(8) — ZEH(B) = Zpyr (B):

Simulations of the resistive chamber (Z4;) and Longitudinal impedance after numerical
. . 0
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Numerical cancellation: longitudinal wake potential
of aresistive chamber, inthecase g =0.5

The technique can also be applied directly to the wake potential:

Simulations of the resistive chamber (W{;) and Longitudinal wak? Potentlal a:tter numerical
H . (0] (0]
bounding box (W% cancellation: Wi (B) — W% (B)
0.6 4 X107
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Longitudinal wake potential varying 3

3

It can be observed that the longitudinal wake potential scales with fz.

x 10~4
L0 — W(B=1)
W(B=0.75)
— W(B=0.5)

0.5 1

Wy [V/pC]

—500 0 500 1000 1500 2000

[1] See also s [mm]
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Longitudinal wake potential varying f:
comparison between g =1and =0.5

3
It can be observed that the longitudinal wake potential scales with g 2.

x 1074
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Longitudinal impedance varying 3

As expected, the longitudinal impedance doesn’t change with .
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Settings for transverse simulations

The dipolar vertical transverse impedance was simulated: the integration path stays on
axis while the beam is displaced vertically with an offset of 20% of the vertical half-aperture.
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Transverse wake potential varying 8

It can be observed that the transverse wake potential scales with fz.

3
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Transverse wake potential varying f3:
comparison between g =1and =0.5

3
It can be observed that the transverse wake potential scales with fz.
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Transverse impedance varying

Even though there are numerical issues, it looks like the transverse impedance scales with .
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Simulations of a pillbox cavity with the Eigenmode and Wakefield solvers

« Longitudinal impedance

« Transverse impedance
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Pillbox cavity

Study of the first two resonant modes:
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Numerical cancellation: longitudinal impedance of a
pillbox, inthe case f# =0.5

o 17;]1(2) IS the one affected by space e T
charge. .
* For a pillbox we get: 5 1000- .:
Zoor )+ ZEGB) ~ 2B (B)  § | e i
1000 |
« Zixc(B) and Z55:(B) can be o
analytically calculated and removed.

0.0 0.2 0.4 0.6 0.8 10 12
frequency [GHz]
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Numerical cancellation: longitudinal impedance of a
pillbox, inthe case f# =0.5

 Im(Z) Is the one affected by space 3000 | ——
=== Zpur + Zpjr = L
charge. o
2000 - Zput + Zput
-== Zpur
« For a pillbox we get: = 1000 g
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Eigenmode Solver vs Wakefield Solver

 Wakefield Solver (WF): directly

—— wakefield solver
—— eigenmode solver

provides the impedance spectrum. 12000
« Eigenmode Solver (EM): provides 10000 -
three parameters.
* Impedance spectrum = 80004
reconstructed based on the g
5 6000 -
broad-band resonator model. 3
E 4000 -
Resonant frequency w, 1.15 GHz 2000 -
Quality factor Q 450
Shunt impedance Rs 21954 Q 0=
1.00
Z(w) = Rs broad-band
1+jQ (ﬂ_&) resonator model
J w, W

105

110 115
frequency [GHz]

1.20

125

130
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Beam coupling impedance varying

Parametric study of the real part of the impedance at f,,, varying 3.

12000
« Good agreement between the e eigenmode solver .
two solvers: 10000 - Wakefield solver
« Relative error < 5% _
G 8000 -
i B
« This agreement was not g 6000
obvious because in the EM E :":'
solver the particle velocity is 4000 .' “
. . (=18
taken into account only in .
post-processing. 2000 1
o%e . .
01 secssea®es® ®e0 PP
0.2 0.4 0.6 0.8 10
B
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Beam coupling impedance varying f3:
relationship with the Transit Time Factor

 Study to understand the shape x 104
of the curve g
* In particular values of B for 03 ]
which the peak impedance
goes to 0. 5 o1l g
» It can be explained analytically < - D Z
looking at the transit time £ &
factor for the fundamental § _, g
mode: - =
. (Tl
sin( — 0.2 1
£ i 02 03 0.4 05 06 07 08 0.9 10
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Beam impedance varying the pillbox’s length

] (Tl'l) 60000 -
SIN | 55
T < B4 50000
ml g
ﬁ)l g 40000
When L« 1, we have T—>1, £
so if we reduce the length of E-’*”“““'
the pillbox the last minimum
IS reached for a lower £. 10000 1
D_
EI.IZ D!-'-l D.IE EI.IB l.lﬂ
B
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Peak iImpedance and — > varying B for TMo:o mode

ﬁ
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Peak impedance for the second resonant mode

e eigenmode solver §
30000 - wakefield solver
25000 ;
* Also, for the second mode %
there is good agreement 2 20000
between the two solvers. b
_ 2 15000 - .
* Relative error < 5% = .
E 10000 - .
Wy
5000 -
v,
0 oo.o.c.iti"'.o‘.. '.'G-"
0.2 0.4 0.6 0.8 1.0
B
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Peak iImpedance and — > varying 8 for TMuo mode

ﬁ
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Settings for transverse simulations

The generalized transverse impedance was simulated with
an offset of 10% of the radius of the pillbox.

« WF Solver: beam and integration path are directly
displaced.

- EM Solver: the longitudinal impedance at f, is calculated at
different transverse offsets, with the expectation of obtaining a

parabola:
_ 2 2
Zy=ZotZj1x xp +Zy1y" Yo - }
’ -y
The transverse impedance is R N
7640 l | | | ] \
computed through to the /
2 760 Panofsky-Wenzel theorem: AN
& »
g 1% _ 1] S
;‘:27610 den = Z”,lx(fr) ¢ \\
gen =
78001 o (ST data an‘l' | \
100 075 _0;50 —ofzsﬁs S.;'m . 025 [050] 0.75 1.00 W|th le,lx(fr) from the flt
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Generalized transverse beam impedance varying 8
and role of the quadrupolar component

Good agreement between the 100000
two solvers. e eigenmode solver
e wakefield solver
Th de i - q | 80000 - e wakefield solver - quadrupolar
e mode is mainly quadrupolar: —
« B =1:noradial field 5
dependence y oo
1%
Z;’J;ad =0-2Z7 small 3
E 40000 -
- ®
« B < 1:radial field g
dependance 20000 {
quad gen .
Zy, #0-Z, higher
u- I I 1 1 I 1 T T
0.2 0.3 04 0.5 0.6 Q.7 08 09 10
B
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Generalized transverse beam impedance varying 8
for the second mode

100000
e eigenmode solver
wakefield solver
20000 -
E
g
Also, in the second mode g o0
there Is good agreement s
between the two solvers. 2
E 40000 -
s
i
20000 -
D_
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« Conclusions
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Conclusions

- Low-beta simulations are extremely challenging due to a series of factors (mesh
convergence, direct integration method, removal of direct space charge, etc.).

« The numerical cancellation technique for the removal from the simulation of the direct
space charge contribution was benchmarked with a resistive wall beam chamber:

3
» the wake potential, both longitudinal and transverse, scales with g z;

« thelongitudinal impedance doesn’t change with 8, as expected,;
* the transverse impedance scales with g, as expected.

« Simulations of a pillbox cavity:
* Numerical cancellation has been applied successfully.
« Good agreement between the Eigenmode Solver and the Wakefield Solver:
» The non-ultrarelativistic Wakefield simulations are accurate.

« The Eigenmode Solver approximation of adding particle velocity only in post-processing with the transit
time factor has been found to be accurate.
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* Next steps
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Next steps

« Since the way that CST runs its simulations and the reason behind the numerical issues are
not known, using an electromagnetic solver whose implementation is know would be useful:

low-beta simulations are going to be run with wakis
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Low-beta simulations with

from wakis import GridFIT3D, SolverFIT3D, WakeSolver
import pyvista as pv

Ho--mmmmm - Domain and Grid setup ---------
# Number of mesh cells

Nx = 57

Ny = 57

Nz = 109

#dt = 5.707829241e-12

# Geometry Import

stl cavity = 'cavity.stl®
stl pipe = 'beampipe.stl’
stl solids = {'cavity': stl cavity, 'pipe': stl pipe}

# Materials
stl materials

= {'cavity': 'vacuum', ‘'pipe': ‘vacuum'}
background = [1.0,

1.0, 100] # lossy metal [e_r, u r, o]

# Domain bounds (from stl)
surf = pv.read(stl _cavity) + pv.read(stl pipe)
xmin, xmax, ymin, ymax, zmin, zmax = surf.bounds

# Set grid and geometry

grid = GridFIT3D(xmin, xmax, ymin, ymax, zmin, zmax, Nx, Ny, Nz,
stl solids=stl solids,
stl materials=stl materials)

#tgrid.inspect()

# o----mmmmmm - Beam source ----------------

# Beam parameters and wake obj.

beta = 0.8 # beam relativistic beta

sigmaz = beta*6e-2 # [m] -> multiplied by beta to have f_max cte
q = le-9 # [C]

Xs = 0. # X source position [m]

ys = 0. # y source position [m]

xt = 0. # x test position [m]

yt =0 # y test position [m]

# tinj = 8.53*sigmaz/(beta*c) # injection time offset [s]

wake = WakeSolver(g=q, sigmaz=sigmaz, beta=beta,
Xsource=xs, ysource=ys, xtest=xt, ytest=yt,
save=True, logfile=True)

)

0

GitHub

Simulation of a cylindrical pillbox below
cut-off for different relativistic g values.

CERN
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https://github.com/ImpedanCEI/FITwakis
https://github.com/ImpedanCEI/FITwakis/tree/main/benchmarks/betacavity

Next steps

« The presented study will be applied to the PSB FINEMET cavities, whose impedance model
can be improved because it currently doesn’t account for non-ultrarelativistic beams.
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Beam coupling impedance simulations
of the PSB FINEMET cavities

Study on the FINEMET cavities’ realistic 3D model, simplified for electromagnetic simulations

Metallic box
N

- 1___._1.__._- i e+ e e

‘\ll‘ll- YT
bl Tl 1 kil )

lI(:.:.glIl;.i.-llf

'I- —i

P
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Thank you for your attention
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Longitudinal wake potential:
comparison between g =1and =0.5

3
It can be observed that the longitudinal wake potential scales with g 2.
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Transverse wake potential:
comparison between g =1and =0.5

3
It can be observed that the longitudinal wake potential scales with g 2.
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Peak impedance of the second mode varying B:
relationship with the Transit Time Factor

03 x 104
Sin (Tl'l)
NI 2
T < B4 D2
ml
pA . 1 E
e This formula doesn’t work & Z
. a o
for higher order modes. E ooy o 2
= =
 Changes in the formula for E-‘”' %
the other modes are being e
studied. 02 -
-2
-0.3 T ; T T T T T T
01 02 03 04 05 0.6 07 0.8 09 14

B
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Generalized transverse beam impedance varying 8
and role of the quadrupolar component

ko 100000
Es (7"; ¢) — Q 2 Amlm <’3—T Cos(mgb) s eigenmode solver
m 4 e wakefield solver
Q k 80000 - o wakefield solver - quadrupolar
0 .
H.(r,¢) = —Z B, 1, <— r) sin(mg) —
Zg By aE-
m [S.]
: _ : 9okoZo Y 60000 1
4
The mode is mainly quadrupolar: E 40000
« B =1:noradial field dependence
o
Zz;ad =0- ij,n small 20000 -
« P < 1:radial field dependance o

° Zz";ad # 0 — Z;J" higher
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