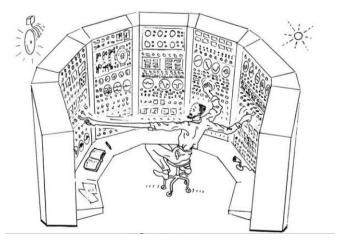
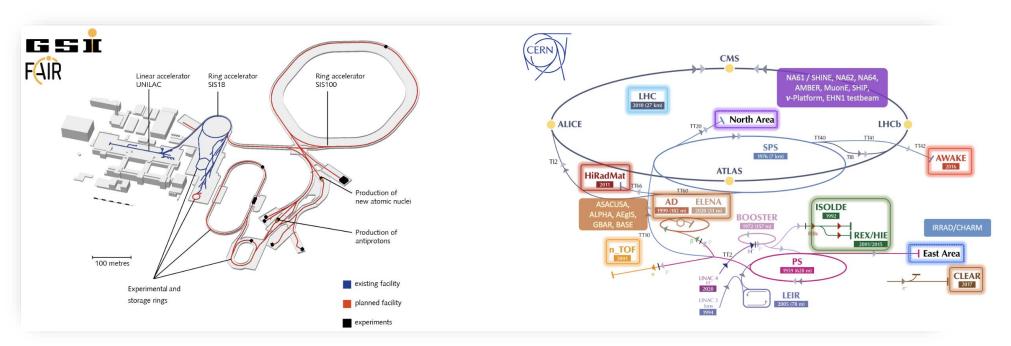


Advancements in Accelerator Operation Automation and Al integration

S. Appel, O. Boine-Frankenheim, V. Isensee, N. Madysa, A. Oeftiger *GSI, Darmstadt, Germany*

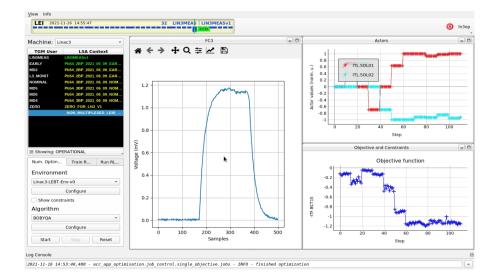

V. Kain, C. Roderick, <u>M. Schenk</u>, F. Velotti *CERN, Geneva, Switzerland*

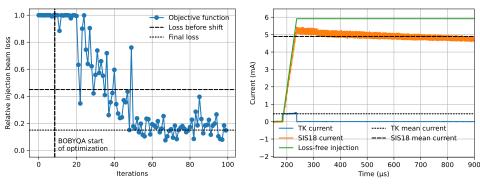
CERN-GSI Collaboration Steering Committee 2024


26. April 2024

Beam operation challenges *Motivation*

- Machine availability & beam quality are essential to reach physics objectives parameter drifts, fault recovery & prediction, testing, ...
- Broad spectrum of machine & beam types with multi-destination operation beam commissioning & preparation, hysteresis & eddy-currents, scheduling, ...


• Exploit automation & technological advances (ML / AI) where possible

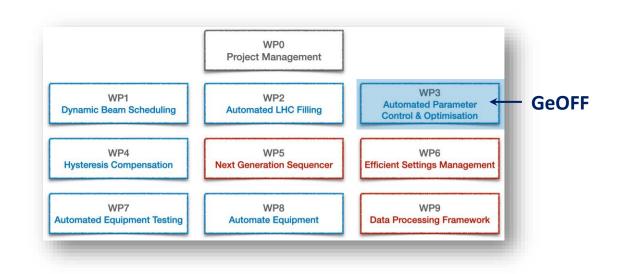

GeOFF Collaboration

History & scope

- Focus on parameter optimization & drift compensation here
- Address in **generic & flexible manner** is framework
- Generic Optimization Framework & Frontend (GeOFF)
 - **Python framework** to unify **different optimization approaches** Classical Black-Box & Bayesian Optimization, Reinforcement Learning, Continuous Optimal Control
 - Standardized interfaces, tools for developers & docs
 - **GUI application** that wraps everything together
 - *"Facilitate implementation of parameter optimization task with primary focus on problem itself"*
- Initiated and originally developed at CERN
- Since 2022 informal, yet effective collaboration with GSI focus on AI, optimization algorithm & tools development, knowledge sharing

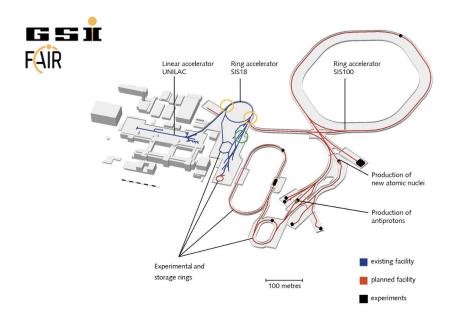
Example: CERN Linac3

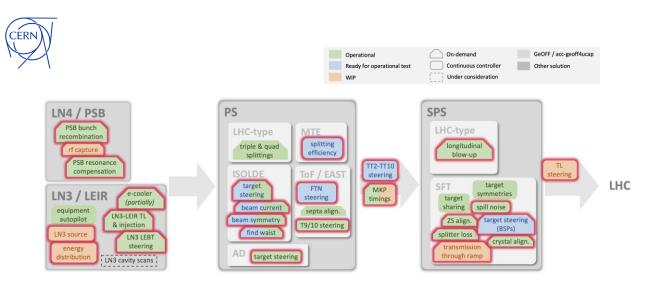
Example: GSI SIS18


GeOFF: status & plans ... at CERN & GSI/FAIR

GSI/FAIR

- **EURO-LABS** finances a scientific staff member for three years in the Accelerator Physics Group
- Maintenance and co-development of GeOFF
- Participation of several Master / PhD students from TU Darmstadt


CERN

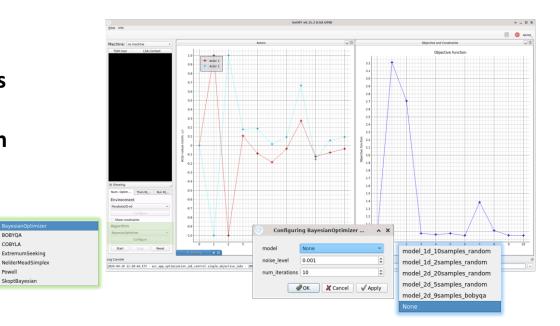

- GeOFF one of core products of DSB section in BE-CSS
 - Two staff part time for maintenance, improvements, and evolution
- Efficient Particle Accelerators project (EPA)
 - Goal: explore and exploit automation & ML/AI systematically across complex
 - Approved in autumn 2023 for a 5-year period

GeOFF: status & plans

... at CERN & GSI/FAIR

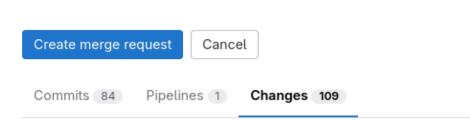
- November 2023: successful optimization runs using GeOFF at TK, SIS18 & FRS
- Introduction of Python Bridge to access LSA & FESA via Python
- Investigation of safe deployment of Python applications in control room

topic for the FAIR Mini-MAC controls review


- **GeOFF** since LS2 main optimization framework in use beam commissioning & day-to-day operation, further auto-pilots under development
- Trend from on-demand to continuous control Ported GeOFF concept to server: UCAP* infrastructure with Python & GPU support is key

* Unified Controls Acquisition and Processing: data processing pipelines on server

GeOFF: recent developments *Custom algorithms, upgrades, and maintenance*


• Features & algorithms

- Optimization tasks can have **custom configurable algorithms** *e.g.: model-based controller with prior knowledge*
- GSI: preparing proof-of-concept of Multi-Objective Bayesian
 Optimization (BO)
- CERN: resonance compensation with pre-conditioned BO ongoing tests at PSB

Upgrades and maintenance

- Repayment of technical debt by upgrading dependencies, adjusting all interfaces and fixing bugs
 - GeOFF is heavily based on OpenAl Gym
 - OpenAI ceased development:
 Farama Foundation took it over as Gymnasium
 - Many backwards-incompatible changes since then
- Update documentation

Showing 106 changed files v with 12991 additions and 3155 deletions

GeOFF: next steps

Highest priority items and common interests

- Improve **Bayesian Optimization** (BO) support
 - CERN: Adaptive BO, BO with non-constant prior
 - GSI: Multi-Objective BO
- Improve integration of Reinforcement Learning
- Evolution of **GUI application**
 - CERN: distribute maintenance work between accelerators
 - o GSI: use outside CERN is EURO-LABS requirement

Conclusions

- GSI-CERN collaboration on GeOFF has been highly successful and will continue
 - Labs are in **direct collaboration** and through **EU-projects**
 - **CERN** has a lot of experience in **automation and AI**
 - **GSI** is making progress in the field, and **offers valuable contributions in terms of algorithms** *e.g.: Multi-Objective Bayesian Optimization*
 - Both labs are facing **similar control problems** *e.g.: resonance compensation, spill noise cancellation, drift compensation in general*
- GeOFF is a great example where GSI & CERN profit from common infrastructure and share expertise
- **Strengthening collaboration** further is goal of the *Artificial Intelligence for Accelerators, User Communities and Associated Technologies project (ARTIFACT)**

*pending approval

Thank you

Backup

Next Steps in GeOFF

Highest Priority Items and Common Interests

- Improve **Bayesian Optimization** support ۲
 - **CERN: Adaptive Bayesian Control** 0
 - GSI: Multi-Objective Bayesian Optimization 0
- Improve integration of RL ٠
- Evolution of **GUI application** ۲
 - CERN: distribute maintenance work between accelerators 0

40

35

RMS horizontal deviation [mm] 07 25 05 10 05

5

0

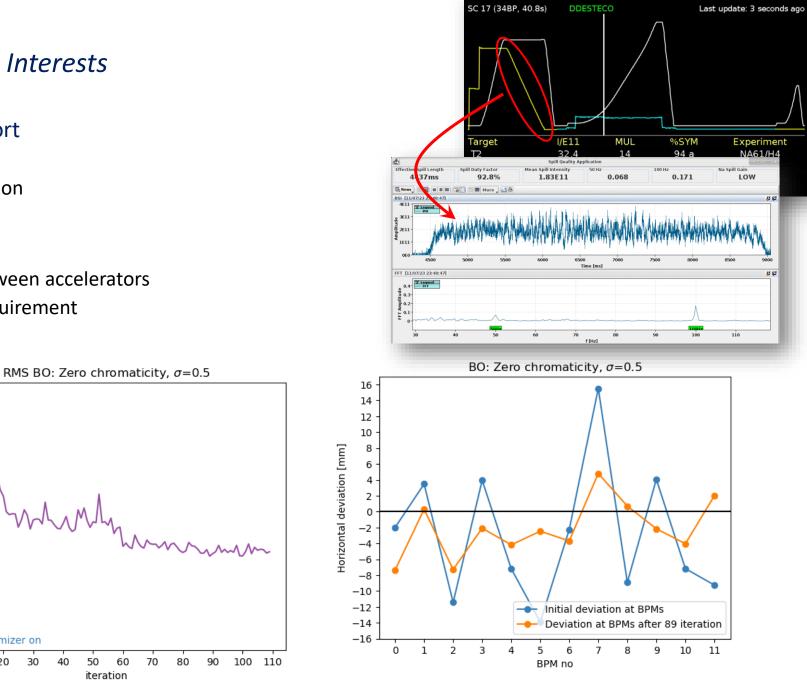
Initial

data

0

random

10


Optimizer on

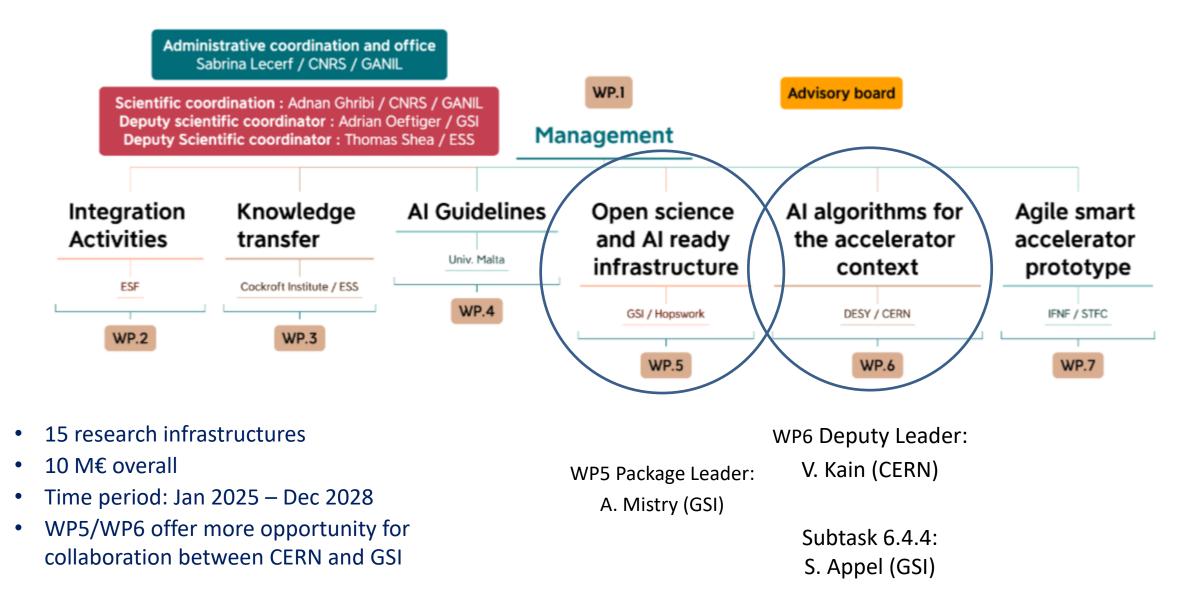
30

40

20

GSI: use outside CERN is EURO-LABS requirement 0

SPS-PAGE1 Current user: LHCPILOT


6.19E+09 11-07-23 23:45:38

V. Isensee (TU Darmstadt), C. Caliari (TU Darmstadt), A. Oeftiger (GSI)

ARTIFACT

Artificial Intelligence for Accelerators, User Communities and Associated Technologies

Infrastructure Frameworks & building blocks

Classical automation concepts

- Sequencer: programmatic \geq execution of tasks
- High-level parameter models
- AccTesting

itch off MAIN BENDS (EGC) itch Off MAIN QUADRUPOLES (FGC) Switch off Sextupoles and Octupoles (FGC

EPA: sequencer 2.0, equipment testing, efficient settings management

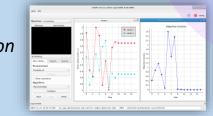
Acc-Py "accelerating Python"

- Full integration of Python with control system
- > Online data acquisition, equipment access (set / get), app development, ...
- > Python package index

UCAP

Unified Controls Acquisition & Processing

- Virtual device service
- Event-based, online data transformations
 - **Further evolution with EPA**

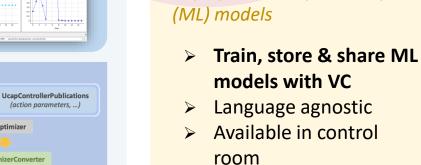

Enabling automation with AI / ML

Auto-pilots & optimizers

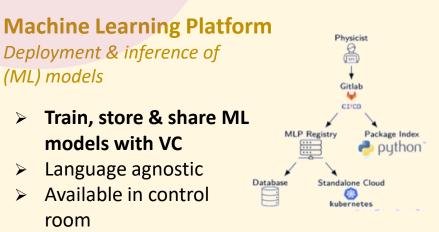
- Facilitate implementation \geq of control problems
- **Exploit & expose features** of control architecture
- Maintain **uniformity** across complex

GeOFF	jine sta Machine: co muture 1981 344
Generic Optimization	8 Shaving
Framework and	Nen Optim. Tala A. Environment Produkt vit Georgen Store Centralita Algorithm
Frontend	Inglanding Configure

acc-geott4ucap Framework for optimization & control via UCAP



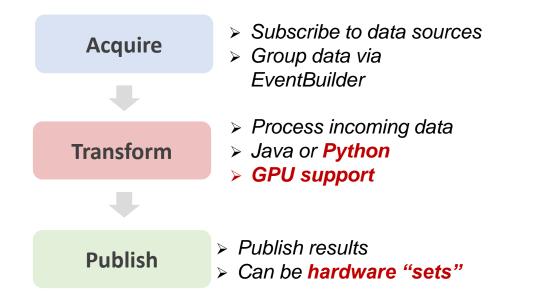
UcapOptimize


UcapOptimizerConverte

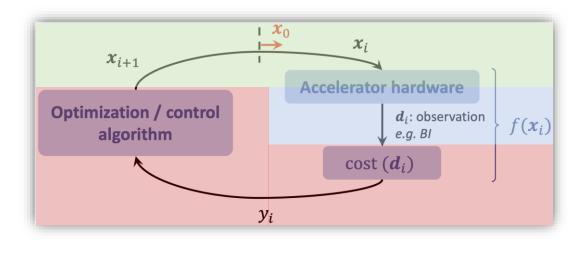
UcapOptimizationProblem

(objective, x_0 , trigger, ...,

Deployment & inference of



UCAP


Framework & service to implement & run online data processing pipelines

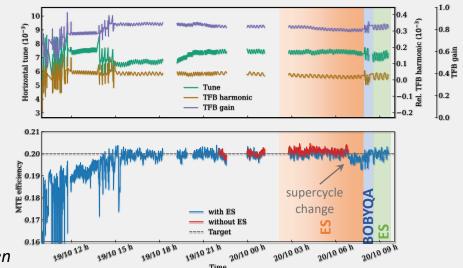
acc-geoff4ucap

Use UCAP to implement the **optimization / control loop on server**

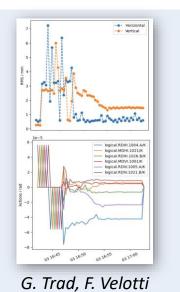
- UCAP pipelines can be chained and built into hierarchies
- Conceptually simple, and very **powerful**

Great infrastructure to run auto-pilots

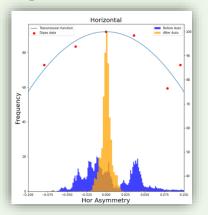
continuous controllers or auto-launching optimizers


Status & results *Auto-pilots: a selection*

PS Multi-Turn Extraction


- > Automatic drift compensation
- Successfully tested and tuned in MDs with controllers on UCAP
- Hybrid agent: continuous controller interleaved with optimizer when far off
- > Upcoming operational test

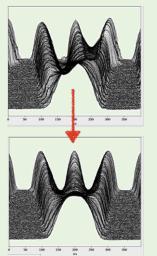
A. Huschauer, M. Schenk, C. Uden


Trajectory steering framework *using acc-geoff4ucap*

- Versatile objective
 Beam position, beam loss, ...
- > Generic settings & actors
- Various algorithms incl. Micado / SVD
- > In 2024: PS2SPS, SPS2LHC

PS EAST: fixed target beam steering

- > **PID** regulator on **UCAP**
- Simple & effective
- 2024: integrate with accgeoff4ucap
- Similar controller for TL towards AD

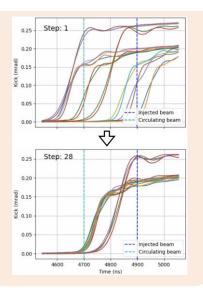


J. McCarthy

14

Status & results

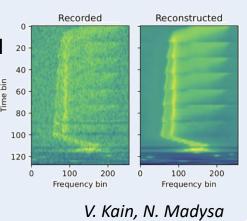
Reinforcement learning: a selection

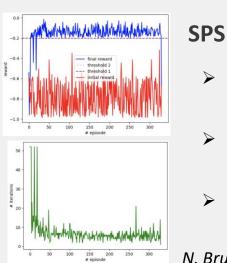

PS

- Correct RF phase & voltage for uniform bunch splitting (LHC beams)
- Successful sim2real & fully operational
- Multi-agent (SAC) & CNN for initial guess
- Next: continuous controller (UCAP)

A. Lasheen, J. Wulff

PS to SPS


- Adjust fine delays of SPS
 injection kicker
- RL agent (PPO) trained on
 data-driven dynamics model
- Ready for sim2real test



M. Remta, F. Velotti

LINAC3 / LEIR

- PhD project (B. Rodriguez): control LINAC3 cavities for optimal injection efficiency into LEIR
- RL state based on VAE-encoded
 Schottky spectra
- Agent trained on data-driven dynamics model

Steer DC beams in TT20 TL using splitfoil secondary emission monitors

- Works well in simulations, with noise and varying emittances
- Ready for sim2real test

N. Bruchon, V. Kain