Electronics Upgrade Meeting

Analog Electronics COTS design

21/07/2011

Summary

- COTS approach
- Schematics
- Board
- Measurements
- To do

COTS approach

- Noise requirements impossible to achieve with commercial components.
- Friis rule -> need to amplify before doing any other operation.

Different Clipping Approach

• Clipping after amplifying \rightarrow Impedance problem

Equivalent system found, same impulse response but no <u>Input</u> impedance problems.

Same Integration system

- Integration
 - Delayed Lines Integrator as in the current CALO

Schematics

•The COTS scheme requires 3 OP amps and 2 delay lines per channel

Preliminary measurements

DC-DC converters

 Able to test DC-DC converters produced by CERN to evaluate possible noise

Mating connector: SAMTEC CLE-116-01-G-DV-A (female)

First Set of Prototypes

First Set of Prototypes

- 1. Analog Design
- 2. ADC test zone
- 3. ADCs
- 4. DC-DC converter
- 5. Switched Design (ASIC)

6.

10 Layer board Stack:

70um conductors 100um FR4 for supplies (better interplane capacity) 130um FR4 for external (thin -> low crosstalk) 230um FR4 for internal (minimum to achieve 50Ω)

Testing

On previous prototypes tested roughly analog design On current prototype:

- •In depth analog testing
- ADC testing
- DC-DC evaluation

ADC testing

First measurents with ADC reveal some noise, slightly higher than theoretical predicted one, different mean because R tolerances

4Ksamples histogram, Red with short circuit at the input, blue without the short circuit (driven by a zeroed unitary gain driver)

Analog power supply

Can it have something to do with the power supply decoupling?

Measured the analog supply with a spectrum analyzer.

No isolated chamber:

- 1. Radio
- 2. TV
- 3. Mobile phone

Analog power supply

Clock drivers' rise time ~500ps -> High frequency harmonics couple to analog supply.

Effect disappears without clock.

Should study if digital switching could be a relevant noise source.

Board level simulation

Beginning Agilent's ADS simulation

Gerber and stack import

S-Parameter extraction Simulation Component Generation

Electromagnetic Model

Circuit Level Simulation Results

To do

- ADC test with CAT (now capturing with scope)
- In depth study of analog proposal:
 - Noise
 - Linearity
 - Pulse Shape: Planarity, Baseline,...
 - Radhard qualification
- Power integrity study (already started)
- Verify signal integrity issues (already taken into account)

Electronics Upgrade Meeting

Backup Slides

First Set of Prototypes

Schematic view

