Digital Electronics and DAQ

Frédéric Machefert On behalf of the calorimeter upgrade group

LAL, Orsay

- The calorimeter electronics upgrade
 - Pending question on the SPD/PRS
 - No decision yet, but a large fraction of what is done may be used for PS/SPD
 - In order to keep the PMT alive during the upgrade period
 - Reduce the PMT gain by a factor 5
 - Need to compensate on the electronics
 - New analog part on the front-end will do it (Barcelona)
 - Noise should not be increased in the operation
 - 2 solutions
 - ASIC (David and Edu's talks)
 - Discrete (Carlos' talk)
 - Move to a 40MHz readout : change the digital part (Orsay \rightarrow this talk)
 - Perform a packing in order to reduce the bandwidth needed
 - No loss of information
 - Small ADC values coded on less bits
 - Gain on the number of bits sent
 - Pay an overall format word
 - Global gain
 - 32 channels per board, 4 optical links per board→ GBT

- Would like to "externalise" the fast signal part of the new FEB
 - A mezzanine plugged on the FEB would receive the 40MHz signals
 - Fast signal and GBT on the mezzanine
 - This was done with the present detector and the GOL \rightarrow successful
- L0 mainly kept and replaced by Low Level Trigger \rightarrow Cyril Drancourt (Annecy)
 - Send (more than) the "old" L0 information to a board similar to a TELL40
 - Information is not anymore sorted by the selection board
 - Need for an interface between TVB (cavern) and "TRIG40"
 - ▶ TVB (GOL) \rightarrow TRIG40 (GBT)
- A new control board is needed in central slot to replace the CROC
- ECS : several solutions envisaged
 - Keep SPECS would be easier for us... unless we are alone
 - Another solution would be to change the firmware of the SPECS FPGA
 - SPECS \rightarrow I2C would become I2C(GBT) \rightarrow I2C
 - A GBT mezzanine would replace the SPECS mezzanine
 - This looks feasible but no real work on this field yet
- Power
 - We think of keeping the present power supplies (Marathon) \rightarrow ok
 - We would try to replace the present regulators by DC-DC converters
 - Should be $ok \rightarrow to be tested$

CERN CERN - LHCb Electronics upgrade

July 21st, 2011

- Analog prototype
 - Supports the analog part and the ADC
 - May be powered independently
- Digital prototype
 - may receive the analog prototype as a mezzanine
 - Provides power to the mezzanine (+ trigger, ECS, clocks, ...)
 - Read the ADC output through the connector
 - Main purposes
 - Test the firmware of the digital electronics
 - pedestal subtraction, packing, ...
 - Test the viability of the A3PE solution in terms of Bit flip rate, number of I/Os
 - Previous generation of flash ACTEL was not very reliable for
 - Fast and numerous flipping I/Os
 - Hosts an AX to test A3PE
 - many I/Os of the two are interconnected
 - AX could also be thought as a backup solution
 - optimistics : ressources limited
 - Helps in the analog testing \rightarrow provides an acquisition tool
 - Possibility to perform radiation tests in beams
 - Test power scheme (DC-DC converters)

CERN CERN - LHCb Electronics upgrade

July 21st, 2011

Digital electronics

- The prototype exits
- Main things to do
 - 1) Have an acquisition system for the analog (USB)
 - 2) Implement/Test digital functionalities (packing)
 - 3) Test the A3PE FPGA
- What has been done
 - 1) is mostly OK, need integration with Barcelona analog part. A prototype has been given.

 2) is not fully written (firmware) but is well advanced

AX A3PE Analog proto clocks 0 USB Proto digital Regulators

- 3) nothing has been done yet
- Power supply is also an issue → tests have to be done CERN CERN - LHCb Electronics upgrade

All Blocks inside A3PE1500 in Verilog language

Slow control
Clock, trigger
Acquisition

- PC write in a register (USB)
- Preprogrammed sequence of Triggers starts (sent to NIM output)
- NIM connected to a pulse generator. Analog treatment of the pulses
- After a preprogrammed latency the acquisition (RAM) starts.
- An "end acquisition" bit is flagged when the data are stored
- The PC read the bit until it is flagged and download the data through USB

- The present design of the GBT is such that we can send 80 bits @40MHz
 - Either have a lot of optical fibres (cost) or reduce the bandwith \rightarrow packing
 - The optimum number of fibres is $4 \rightarrow 8$ channels share 80 bits
- First ideas of packing from Jacques. When realisation of the firmware had to be done, new ideas from electronics engineers
 - Thierry Caceres, Ronic Chiche and Olivier Duarte

- https://indico.cern.ch/conferenceDisplay.py?confld=117792, see Olivier's talk
- There was the question whether the GBT format could be extended to 112 bits
 - We are very interested \rightarrow no packing needed anymore

Packing (II)

Data format (GBT input) :

1 byte	1 byte	1 byte	5 bytes	2 bytes
BXId	Trigger	Mapping	8 Shorts ADC	2 long ADC

Packing (III)

BxId

10/18

Packing (IV)

Packing (V)

Preliminary implementation of part of the packing into an A3PE FPGA

- Ressources occupied are ok
- Main problems comes from the timing
 - At present, no margin (circular buffer runs @ 80 MHz)
 - Need to understand the time analyzers and to use optimisation techniques
 - Good hope to improve significantly the time margins

CERN CERN - LHCb Electronics upgrade

July 21st, 2011

ECAL – Front-end Architecture

ECAL A side

last change : 17 January 2006

ECAL C side

96 boards on each side

- Includes 2 pin-diode FEB for monitoring
- A FEB is
 - 32 channels
 - 4 optical links (GBT)

HCAL – Front-end Architecture

- 27 boards on each side
 - Includes 2 pin-diode FEB for monitoring
 - A FEB is
 - 32 channels
 - 4 optical links (GBT)

DAQ : preliminary idea

- ECAL (total of 8 ATCA 8x4 AMC)
 - 96 FEB per side
 - 4 link per FEB
 - 4 ATCA per side
 - 4 mezzanines AMC/ATCA
 - 6 FEB per mezzanine
 - Total of 4 ATCA/side
 - Optimisation vs crate splitting
 - HCAL (total of 3 ATCA 4+2x3 AMC)
 - 27 boards per side (incl. 4 pin-diode)
 - Read full inner in 1 ATCA board
 - 2 crates for 2 sides
 - 11+11=22 FEB inner
 - 2(2) AMC for side C(A)
 - Read outer (2x14 FEB) in 2 ATCA
 - 4 Pin-diode read out with outer
 - Pin-diode side corresponds to outer ATCA side

- A new board plugged in central slot of the ECAL/HCAL crates
 - Receives
 - Clock
 - Slow control
 - Commands
 - Propagates signals to the FEB
 - ~CROC without
 - DAQ, debugging
 - $(7+2)+(7+2) = 18 \text{ crates} \rightarrow 2 \text{ ECS mezz.}$
- ECAL/HCAL integrators
 - SPECS mezza → GBT mezzanines
 - 2+4 are needed \rightarrow 1 ECS mezz.
 - In FEB ECS40
- ECAL/HCAL HV_DAC boards
 - GBT mezzanines
 - $32+8 \rightarrow 3+1$ ECS mezz.
- Calibration source
 - CAN Bus \rightarrow keep it

Conclusion

- Front-end electronics is progressing well
 - Analog
 - Digital
 - LLT
- Still several fields not covered
 - Simulations
 - PS/SPD
 - ECS (SPECS replacement ?)
 - GBT mezzanines for the ECS
 - Modification of the firmware of the SPECS FPGA (on board FPGA)
 - GBT mezzanines for the DAQ ?
 - Control board (clock, channel B, ECS, …)
 - ... do not mention what will come soon (TELL40 firmware, PVSS, ...)
- Digital electronics is progressing
 - First prototype firmware includes acquisition
 - Packing is mostly coded : seems to be ok but not tested with signals !
 - Do we need it ?

ECAL

- 8 ATCA
 - 4 for side A (max load \rightarrow 4x4 mezz.)
 - 4 for side C (max load \rightarrow 4x4 mezz.)
- HCAL
 - 3 ATCA
 - I for inner (both sides in same ATCA, 2 mezz. per side)
 - 2 for outer (A and C splitting) and pin-diodes (also split in A and C Sides)
- ECS is 2 ATCA
 - I for FEB + Integrator readout (3 mezz)
 - I for HV control (3+1 mezz. For ECAL and HCAL respectively)
 - Is the ECS (PVSS) load acceptable for a single ECS40 ?
 - Had to split the calo ECS to have an acceptable response in current design
- 13 ATCA in total
 - Maximum number of slots in an ATCA crate is 12
 - 13 required \rightarrow prefer to have an experiment dedicated ECS crate !