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Disclaimers

= NOT the new ROOT histogram package

= Just some ideas and a prototype for my own research

= Interface and prototype are designed from a computer science perspective

= Possible to implement efficiently, but may be missing features required for physics
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Quick Look at Existing Solutions (1/2) ()

= ROOT histogram package: TH1, TH2, TH3

= Subclasses for bin content type: TH1I, TH1F, TH1D
= Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D
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Quick Look at Existing Solutions (1/2)

= ROOT histogram package: TH1, TH2, TH3

= Subclasses for bin content type: TH1I, TH1F, TH1D
= Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

= Multi-dimensional THn and THnSparse (inheriting from THnBase)
= With concrete subclasses THnT<T> and THnSparseT<CONT>

= Both use TAxis to store the axis configuration

= TAxis::FindBin switches at run-time between fixed and variable bin sizes
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Quick Look at Existing Solutions (2/2)

= Boost.Histogram (since Boost 1.70)
= Templated on <class Axes, class Storage>
= Static histogram: compile-time std: :tuple of concrete axis types
= Semi-dynamic histogram: variable number of axes (std: :vector)
= Dynamic histograms: std: :vector of dynamic axis: :variant
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Quick Look at Existing Solutions (2/2)

= Boost.Histogram (since Boost 1.70)
= Templated on <class Axes, class Storage>
= Static histogram: compile-time std: :tuple of concrete axis types
= Semi-dynamic histogram: variable number of axes (std: :vector)
= Dynamic histograms: std: :vector of dynamic axis: :variant

= ROOT: :Experimental::RHist prototype for ROOT 7

= Templated on number of DIMENSIONS, PRECISION, and optional bin statistics
= Has a pointer to (abstract, polymorphic) RHistImplBase
= Concrete RHistImpl is templated on processed axis types

= Will not work with RNTuple! (unless unsplit storage)
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Templates vs Run-Time Parameters

= All existing solutions statically type the bin content

= Makes sense, knowledge about the type also essential for |/O
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Templates vs Run-Time Parameters

= All existing solutions statically type the bin content

= Makes sense, knowledge about the type also essential for |/O

= Two approaches for axis configuration in the existing solutions:

1. Dynamic at run-time (TH#* using TAxis)
2. Via templates at compile-time (Boost.Histogram, RHist)

= Possibility to have dynamic axis types, or
= Hide the axis types via a polymorphic pointer

6/28



Understanding the Tradeoffs with Templates

= Templates and inline functions allow compiler optimizations

— least overhead, best performance (?)
= Can lead to very long compile times: 4 minutes for RHist<6, int>!
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Understanding the Tradeoffs with Templates

= Templates and inline functions allow compiler optimizations

— least overhead, best performance (?)
= Can lead to very long compile times: 4 minutes for RHist<6, int>!

= Excessive templating complicates 1/0

= At least with ROOT, need to know concrete type
= Boost.Histogram mentions dynamic Python bindings

= Probably less of a problem with flexibility of PyROOT / cppyy

= ... and user code: either templated as well or very long types

= Question: How much do we actually lose with dynamic axes configuration?

= Which tricks can we play to recover performance?

7/28



A Most Trivial Histogram Prototype

= EPHist<T> templated on bin content type
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A Most Trivial Histogram Prototype

= EPHist<T> templated on bin content type

= Implement trivial Fill function for one dimension of fixed bins

void Fill(double x) {
std::size_t bin = (x - fLow) * fInvBinWidth;
assert(bin >= 0 && bin < fNumBins);
fData[bin]++;
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A Most Trivial Histogram Prototype

= EPHist<T> templated on bin content type
= Implement trivial Fill function for one dimension of fixed bins

= Benchmark filling 4096 uniform random values [0, 1) into 20 bins

void Fill(double x) {

std::size_t bin = (x - fLow) * fInvBinWidth;
assert(bin >= 0 && bin < fNumBins);
fData[bin]++;
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A Most Trivial Histogram Prototype

time per fill [ns]

EPHist<T> templated on bin content type
Implement trivial Fill function for one dimension of fixed bins

Benchmark filling 4096 uniform random values [0, 1) into 20 bins
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Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
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Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

2. Wrap RegularAxis in a std::vector
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Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

»

Wrap RegularAxis in a std: :vector

&2

Implement multi-dimensional histograms
— Add a second benchmark configuration (4096 values into 20 x 20 bins)
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Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
2. Wrap RegularAxis in a std::vector
3. Implement multi-dimensional histograms
— Add a second benchmark configuration (4096 values into 20 x 20 bins)
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Different Axis Types
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Different Axis Types

1. Wrap RegularAxis in a std::variant
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Different Axis Types

1. Wrap RegularAxis in a std::variant
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Implement an axis type with variable bins
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Optimizing Performance: A little bit of templating

= Does it help to template only the Fill method?
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Optimizing Performance: A little bit of templating

= Does it help to template only the Fill method?
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Optimizing Performance: Access into std::variant (1/2) ﬁ

= std::get and std::get_if need to check what alternative is held by variant

= Otherwise throw exception or return null pointer value
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ng Performance: Access into std::variant (1/2) ﬁ

= std::get and std::get_if need to check what alternative is held by variant

= Otherwise throw exception or return null pointer value

= In our case, content of std: :variant is constant during Fill

= For templated Fill, we even know what content we expect!

= Implementations in libstdc4++ and libc++ put union as first member

= Can just reinterpret_cast a pointer to the std: :variant
= (in the constructor, check once that std::get_if returns the same pointer)
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Optimizing Performance: Access into std::variant (1/2) ﬁ
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Optimizing Performance: Access into std::variant (1/2) ﬁ
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Optimizing Performance: Access into std::variant (2/2) ﬁ

= Better solution: cache the pointer returned by std::get_if
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Optimizing Performance: Access into std::variant (2/2) ﬁ

= Better solution: cache the pointer returned by std::get_if

= When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8

= Lower three bits are available (standard trick in low-level optimizations)
= Can be used to encode the value of index()
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Optimizing Performance: Access into std::variant (2/2) ﬁ

= Better solution: cache the pointer returned by std::get_if

= When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8

= Lower three bits are available (standard trick in low-level optimizations)
= Can be used to encode the value of index()
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Features Required for Histograms




Adding Checks for Fill Arguments and Axis Types
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Adding Checks for Fill Arguments and Axis Types

= Number of arguments must match dimension of histogram
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Adding Checks for Fill Arguments and Axis Types

Number of arguments must match dimension of histogram

= Axis types in templated Fill must match
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Adding More Functions ﬁ

= Constructor to allow “mixed” histograms (regular and variable bin axes)
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Adding More Functions ﬁ

= Constructor to allow “mixed” histograms (regular and variable bin axes)

Add () to merge two histograms, explicit Clone () (instead of copy constructor)

Weighted Fills

= Only allowed for floating point bins (static_assert)

= Bin content errors: DoubleBinWithError

= Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
= Maybe this is good? If needed, have to / can define explicit semantics
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Underflow and Overflow Bins

= Underflow and overflow bins are essential

= When projecting a dimension, want to retain full information
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Underflow and Overflow Bins

= Underflow and overflow bins are essential

= When projecting a dimension, want to retain full information

= Unfortunately implementation costs some performance...

time per fill [ns]
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Data Export to PGFPlots

namespace EPHist {
namespace Util {

// PGFPlots

void ExportPGFPlotsData(const EPHistForExport &h, std::ostream &os);

template <typename T>

void ExportPGFPlotsData(const EPHist<T> &h, std::ostream &os) {
ExportPGFPlotsData (EPHistForExportT<T>(h), os);

} // namespace Util
} // namespace EPHist
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Data Export sgald
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Conversion to ROOT Histograms

namespace EPHist {
namespace Util {

std::unique_ptr<TH1I> ConvertToTH1I (const EPHist<int> &h);
// std::unique_ptr<TH2I> ConvertToTH2I (const EPHist<int> &h);

// std::unique_ptr<THn> ConvertToTHnI (const EPHist<int> &h);

} // namespace Util
} // namespace EPHist
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Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)
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Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)
= UHI: Unified / Universal Histogram Interface

= Export to other data formats (?)

= Complete conversion functions to ROOT histograms

= Conversion to other existing solutions?

= Axis range deduction, growing axes?
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A Note on Sparse Histograms

= Boost.Histogram is templated on Storage, which can be exchanged

= Can implement dense or sparse strategies (e.g. std: :unordered map)
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A Note on Sparse Histograms

= Boost.Histogram is templated on Storage, which can be exchanged

= Can implement dense or sparse strategies (e.g. std: :unordered map)

= THnSparse stores pairs of coordinates and bin contents

Could also allocate chunks of bins and perform direct mapping

= In any case, sparse strategy requires optional memory allocation during Fill

= Pessimizes compiler optimizations because of external call
= Even if possible, not sure if it should be implemented in the same class
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= Benchmark filling 4096 uniform random values [0, 1)
= On one core of AMD Ryzen 9 3900, 3.1 GHz
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Comparison with Existing Solutions

= Benchmark filling 4096 uniform random values [0, 1)
= On one core of AMD Ryzen 9 3900, 3.1 GHz

= Test 1D, 2D, 3D, and 6D histograms from ROOT (master) and Boost (1.84.0)

= 20 bins in each dimension, no Clear () between iterations
= For 1D and 2D: more entries than bins
= For 3D and 6D: less entries than bins (— used bins in cache!)

= Keep in mind: microbenchmarks DO NOT reflect application performance!
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One and Two Dimensions
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More Dimensions: 3D and 6D
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Thoughts on Multithreaded Histograms

= With Boost.Histogram, can use a std: :atomic bin content type

= Allows multithreaded filling of a single histogram
= Works fine as long as single bins are not “too contended”
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Thoughts on Multithreaded Histograms

= With Boost.Histogram, can use a std: :atomic bin content type

= Allows multithreaded filling of a single histogram
= Works fine as long as single bins are not “too contended”

= However changes the type of the histogram

— Requires to use atomic instructions even for sequential operations

= |deally we want the template parameter to be the storage type

= A separate interface (FillAtomic) internally implements atomic operations
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Implementing FillAtomic

= With C4++20 we have std: :atomic_ref

= |t “applies atomic operations to the object it references.”
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Implementing FillAtomic

= With C4++20 we have std: :atomic_ref

= |t “applies atomic operations to the object it references.”

= We can implement it ourselves for our limited use cases:
= Increment operation on integer scalars (with __atomic built-in functions)
= Compare-exchange loop for floating point values (using another built-in function)
= Composite types (e.g. DoubleBinWithError) can be implemented in terms of those
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Multithreaded Filling of Sparse Histograms?

= There are concurrent hash maps that could be used for sparse storage

= Combined with atomic operations described on the previous slide

26/28



Multithreaded Filling of Sparse Histograms?

= There are concurrent hash maps that could be used for sparse storage

= Combined with atomic operations described on the previous slide

= For chunked storage, could have a list of atomic pointers

= |f allocation is required, atomically exchange new chunk
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My Research: Optimized Parallel Filling

= How to deal with contended bins?
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= Filling with atomic operations described in the previous slides
= Having a thread-local buffers to coalesce writes
= Some sort of queuing mechanism?

27/28



My Research: Optimized Parallel Filling

= How to deal with contended bins?

= Options include:

= Duplicate histograms and merge in the end

= Filling with atomic operations described in the previous slides
= Having a thread-local buffers to coalesce writes

= Some sort of queuing mechanism?

= |deally want an interface that automatically chooses the best strategy
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Conclusions and Takeaways

= Prototype of an efficient histogram class

= Templated on the bin content type, otherwise run-time parameters
= Faster than existing solutions with compile-time axis configuration
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Conclusions and Takeaways

= Prototype of an efficient histogram class

= Templated on the bin content type, otherwise run-time parameters
= Faster than existing solutions with compile-time axis configuration

= Thoughts for parallel interfaces

= Atomic operations without changing the storage type
= |deas for sparse histograms & optimized parallel filling

= Prototype code available on GitHub: https://github.com/hahnjo/EPHist
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