
Thoughts on Efficient & Parallel Histograms

Jonas Hahnfeld
April 11, 2024

Disclaimers

• NOT the new ROOT histogram package
• Just some ideas and a prototype for my own research

• Interface and prototype are designed from a computer science perspective
• Possible to implement efficiently, but may be missing features required for physics

2 / 28

Disclaimers

• NOT the new ROOT histogram package
• Just some ideas and a prototype for my own research

• Interface and prototype are designed from a computer science perspective
• Possible to implement efficiently, but may be missing features required for physics

2 / 28

Outline

Existing Solutions

Templates vs Run-Time Parameters

Features Required for Histograms

Comparison with Existing Solutions

Multithreaded Histograms

Conclusions

3 / 28

Existing Solutions

Quick Look at Existing Solutions (1/2)

• ROOT histogram package: TH1, TH2, TH3
• Subclasses for bin content type: TH1I, TH1F, TH1D
• Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

• Multi-dimensional THn and THnSparse (inheriting from THnBase)
• With concrete subclasses THnT<T> and THnSparseT<CONT>

• Both use TAxis to store the axis configuration
• TAxis::FindBin switches at run-time between fixed and variable bin sizes

4 / 28

Quick Look at Existing Solutions (1/2)

• ROOT histogram package: TH1, TH2, TH3
• Subclasses for bin content type: TH1I, TH1F, TH1D
• Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

• Multi-dimensional THn and THnSparse (inheriting from THnBase)
• With concrete subclasses THnT<T> and THnSparseT<CONT>

• Both use TAxis to store the axis configuration
• TAxis::FindBin switches at run-time between fixed and variable bin sizes

4 / 28

Quick Look at Existing Solutions (1/2)

• ROOT histogram package: TH1, TH2, TH3
• Subclasses for bin content type: TH1I, TH1F, TH1D
• Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

• Multi-dimensional THn and THnSparse (inheriting from THnBase)
• With concrete subclasses THnT<T> and THnSparseT<CONT>

• Both use TAxis to store the axis configuration
• TAxis::FindBin switches at run-time between fixed and variable bin sizes

4 / 28

Quick Look at Existing Solutions (2/2)

• Boost.Histogram (since Boost 1.70)
• Templated on <class Axes, class Storage>
• Static histogram: compile-time std::tuple of concrete axis types
• Semi-dynamic histogram: variable number of axes (std::vector)
• Dynamic histograms: std::vector of dynamic axis::variant

• ROOT::Experimental::RHist prototype for ROOT 7
• Templated on number of DIMENSIONS, PRECISION, and optional bin statistics
• Has a pointer to (abstract, polymorphic) RHistImplBase
• Concrete RHistImpl is templated on processed axis types

• Will not work with RNTuple! (unless unsplit storage)

5 / 28

Quick Look at Existing Solutions (2/2)

• Boost.Histogram (since Boost 1.70)
• Templated on <class Axes, class Storage>
• Static histogram: compile-time std::tuple of concrete axis types
• Semi-dynamic histogram: variable number of axes (std::vector)
• Dynamic histograms: std::vector of dynamic axis::variant

• ROOT::Experimental::RHist prototype for ROOT 7
• Templated on number of DIMENSIONS, PRECISION, and optional bin statistics
• Has a pointer to (abstract, polymorphic) RHistImplBase
• Concrete RHistImpl is templated on processed axis types

• Will not work with RNTuple! (unless unsplit storage)

5 / 28

Templates vs Run-Time Parameters

Templates vs Run-Time Parameters

• All existing solutions statically type the bin content
• Makes sense, knowledge about the type also essential for I/O

• Two approaches for axis configuration in the existing solutions:
1. Dynamic at run-time (TH* using TAxis)
2. Via templates at compile-time (Boost.Histogram, RHist)

• Possibility to have dynamic axis types, or
• Hide the axis types via a polymorphic pointer

6 / 28

Templates vs Run-Time Parameters

• All existing solutions statically type the bin content
• Makes sense, knowledge about the type also essential for I/O

• Two approaches for axis configuration in the existing solutions:
1. Dynamic at run-time (TH* using TAxis)
2. Via templates at compile-time (Boost.Histogram, RHist)

• Possibility to have dynamic axis types, or
• Hide the axis types via a polymorphic pointer

6 / 28

Understanding the Tradeoffs with Templates

• Templates and inline functions allow compiler optimizations
→ least overhead, best performance (?)
• Can lead to very long compile times: 4 minutes for RHist<6, int>!

• Excessive templating complicates I/O
• At least with ROOT, need to know concrete type
• Boost.Histogram mentions dynamic Python bindings

• Probably less of a problem with flexibility of PyROOT / cppyy

• ... and user code: either templated as well or very long types

• Question: How much do we actually lose with dynamic axes configuration?
• Which tricks can we play to recover performance?

7 / 28

Understanding the Tradeoffs with Templates

• Templates and inline functions allow compiler optimizations
→ least overhead, best performance (?)
• Can lead to very long compile times: 4 minutes for RHist<6, int>!

• Excessive templating complicates I/O
• At least with ROOT, need to know concrete type
• Boost.Histogram mentions dynamic Python bindings

• Probably less of a problem with flexibility of PyROOT / cppyy

• ... and user code: either templated as well or very long types

• Question: How much do we actually lose with dynamic axes configuration?
• Which tricks can we play to recover performance?

7 / 28

Understanding the Tradeoffs with Templates

• Templates and inline functions allow compiler optimizations
→ least overhead, best performance (?)
• Can lead to very long compile times: 4 minutes for RHist<6, int>!

• Excessive templating complicates I/O
• At least with ROOT, need to know concrete type
• Boost.Histogram mentions dynamic Python bindings

• Probably less of a problem with flexibility of PyROOT / cppyy

• ... and user code: either templated as well or very long types

• Question: How much do we actually lose with dynamic axes configuration?
• Which tricks can we play to recover performance?

7 / 28

Understanding the Tradeoffs with Templates

• Templates and inline functions allow compiler optimizations
→ least overhead, best performance (?)
• Can lead to very long compile times: 4 minutes for RHist<6, int>!

• Excessive templating complicates I/O
• At least with ROOT, need to know concrete type
• Boost.Histogram mentions dynamic Python bindings

• Probably less of a problem with flexibility of PyROOT / cppyy

• ... and user code: either templated as well or very long types

• Question: How much do we actually lose with dynamic axes configuration?
• Which tricks can we play to recover performance?

7 / 28

A Most Trivial Histogram Prototype

• EPHist<T> templated on bin content type

• Implement trivial Fill function for one dimension of fixed bins
• Benchmark filling 4096 uniform random values [0, 1) into 20 bins

void Fill(double x) {
std :: size_t bin = (x - fLow) * fInvBinWidth ;
assert (bin >= 0 && bin < fNumBins);
fData[bin]++;

}

8 / 28

A Most Trivial Histogram Prototype

• EPHist<T> templated on bin content type
• Implement trivial Fill function for one dimension of fixed bins

• Benchmark filling 4096 uniform random values [0, 1) into 20 bins

void Fill(double x) {
std :: size_t bin = (x - fLow) * fInvBinWidth ;
assert (bin >= 0 && bin < fNumBins);
fData[bin]++;

}

8 / 28

A Most Trivial Histogram Prototype

• EPHist<T> templated on bin content type
• Implement trivial Fill function for one dimension of fixed bins
• Benchmark filling 4096 uniform random values [0, 1) into 20 bins

void Fill(double x) {
std :: size_t bin = (x - fLow) * fInvBinWidth ;
assert (bin >= 0 && bin < fNumBins);
fData[bin]++;

}

8 / 28

A Most Trivial Histogram Prototype

• EPHist<T> templated on bin content type
• Implement trivial Fill function for one dimension of fixed bins
• Benchmark filling 4096 uniform random values [0, 1) into 20 bins

void Fill(double x) {
std :: size_t bin = (x - fLow) * fInvBinWidth ;
assert (bin >= 0 && bin < fNumBins);
fData[bin]++;

}

8 / 28

triv
ial

0

1

2

tim
e

pe
rfi

ll
[n

s]

Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

2. Wrap RegularAxis in a std::vector

3. Implement multi-dimensional histograms

→ Add a second benchmark configuration (4096 values into 20 × 20 bins)

9 / 28

triv
ial

Re
gu

la
rA

xi
s0

1

2

tim
e

pe
rfi

ll
[n

s]

Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
2. Wrap RegularAxis in a std::vector

3. Implement multi-dimensional histograms

→ Add a second benchmark configuration (4096 values into 20 × 20 bins)

9 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or
0

1

2

tim
e

pe
rfi

ll
[n

s]

Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
2. Wrap RegularAxis in a std::vector

3. Implement multi-dimensional histograms

→ Add a second benchmark configuration (4096 values into 20 × 20 bins)

9 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.0

1

2

tim
e

pe
rfi

ll
[n

s]

Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
2. Wrap RegularAxis in a std::vector

3. Implement multi-dimensional histograms
→ Add a second benchmark configuration (4096 values into 20 × 20 bins)

9 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.0

1

2

tim
e

pe
rfi

ll
[n

s]

Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
2. Wrap RegularAxis in a std::vector

3. Implement multi-dimensional histograms
→ Add a second benchmark configuration (4096 values into 20 × 20 bins)

9 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic0

1

2

tim
e

pe
rfi

ll
[n

s]

Different Axis Types

1. Wrap RegularAxis in a std::variant

2. Implement an axis type with variable bins

10 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Different Axis Types

1. Wrap RegularAxis in a std::variant

2. Implement an axis type with variable bins

10 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Different Axis Types

1. Wrap RegularAxis in a std::variant

2. Implement an axis type with variable bins

10 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: A little bit of templating

• Does it help to template only the Fill method?

11 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: A little bit of templating

• Does it help to template only the Fill method?

11 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: Access into std::variant (1/2)

• std::get and std::get if need to check what alternative is held by variant
• Otherwise throw exception or return null pointer value

• In our case, content of std::variant is constant during Fill
• For templated Fill, we even know what content we expect!

• Implementations in libstdc++ and libc++ put union as first member
• Can just reinterpret cast a pointer to the std::variant
• (in the constructor, check once that std::get if returns the same pointer)

12 / 28

Optimizing Performance: Access into std::variant (1/2)

• std::get and std::get if need to check what alternative is held by variant
• Otherwise throw exception or return null pointer value

• In our case, content of std::variant is constant during Fill
• For templated Fill, we even know what content we expect!

• Implementations in libstdc++ and libc++ put union as first member
• Can just reinterpret cast a pointer to the std::variant
• (in the constructor, check once that std::get if returns the same pointer)

12 / 28

Optimizing Performance: Access into std::variant (1/2)

• std::get and std::get if need to check what alternative is held by variant
• Otherwise throw exception or return null pointer value

• In our case, content of std::variant is constant during Fill
• For templated Fill, we even know what content we expect!

• Implementations in libstdc++ and libc++ put union as first member
• Can just reinterpret cast a pointer to the std::variant
• (in the constructor, check once that std::get if returns the same pointer)

12 / 28

Optimizing Performance: Access into std::variant (1/2)

• std::get and std::get if need to check what alternative is held by variant
• Otherwise throw exception or return null pointer value

• In our case, content of std::variant is constant during Fill
• For templated Fill, we even know what content we expect!

• Implementations in libstdc++ and libc++ put union as first member
• Can just reinterpret cast a pointer to the std::variant
• (in the constructor, check once that std::get if returns the same pointer)

12 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: Access into std::variant (1/2)

• std::get and std::get if need to check what alternative is held by variant
• Otherwise throw exception or return null pointer value

• In our case, content of std::variant is constant during Fill
• For templated Fill, we even know what content we expect!

• Implementations in libstdc++ and libc++ put union as first member
• Can just reinterpret cast a pointer to the std::variant
• (in the constructor, check once that std::get if returns the same pointer)

12 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: Access into std::variant (2/2)

• Better solution: cache the pointer returned by std::get if

• When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8
• Lower three bits are available (standard trick in low-level optimizations)
• Can be used to encode the value of index()

13 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: Access into std::variant (2/2)

• Better solution: cache the pointer returned by std::get if

• When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8
• Lower three bits are available (standard trick in low-level optimizations)
• Can be used to encode the value of index()

13 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Optimizing Performance: Access into std::variant (2/2)

• Better solution: cache the pointer returned by std::get if

• When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8
• Lower three bits are available (standard trick in low-level optimizations)
• Can be used to encode the value of index()

13 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers
0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Features Required for Histograms

Adding Checks for Fill Arguments and Axis Types

• Number of arguments must match dimension of histogram
• Axis types in templated Fill must match

14 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers
0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Adding Checks for Fill Arguments and Axis Types

• Number of arguments must match dimension of histogram

• Axis types in templated Fill must match

14 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers

#
arg

um
ent

s0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Adding Checks for Fill Arguments and Axis Types

• Number of arguments must match dimension of histogram
• Axis types in templated Fill must match

14 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers

#
arg

um
ent

s

axi
s typ

es0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Adding More Functions

• Constructor to allow “mixed” histograms (regular and variable bin axes)

• Add() to merge two histograms, explicit Clone() (instead of copy constructor)

• Weighted Fills
• Only allowed for floating point bins (static assert)

• Bin content errors: DoubleBinWithError
• Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
• Maybe this is good? If needed, have to / can define explicit semantics

15 / 28

Adding More Functions

• Constructor to allow “mixed” histograms (regular and variable bin axes)

• Add() to merge two histograms, explicit Clone() (instead of copy constructor)

• Weighted Fills
• Only allowed for floating point bins (static assert)

• Bin content errors: DoubleBinWithError
• Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
• Maybe this is good? If needed, have to / can define explicit semantics

15 / 28

Adding More Functions

• Constructor to allow “mixed” histograms (regular and variable bin axes)

• Add() to merge two histograms, explicit Clone() (instead of copy constructor)

• Weighted Fills
• Only allowed for floating point bins (static assert)

• Bin content errors: DoubleBinWithError
• Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
• Maybe this is good? If needed, have to / can define explicit semantics

15 / 28

Adding More Functions

• Constructor to allow “mixed” histograms (regular and variable bin axes)

• Add() to merge two histograms, explicit Clone() (instead of copy constructor)

• Weighted Fills
• Only allowed for floating point bins (static assert)

• Bin content errors: DoubleBinWithError
• Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
• Maybe this is good? If needed, have to / can define explicit semantics

15 / 28

Adding More Functions

• Constructor to allow “mixed” histograms (regular and variable bin axes)

• Add() to merge two histograms, explicit Clone() (instead of copy constructor)

• Weighted Fills
• Only allowed for floating point bins (static assert)

• Bin content errors: DoubleBinWithError
• Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
• Maybe this is good? If needed, have to / can define explicit semantics

15 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers

#
arg

um
ent

s

axi
s typ

es
mixe

d
Ad

d(
)

Cl
on

e(
)

weig
hte

d
err

or0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Underflow and Overflow Bins

• Underflow and overflow bins are essential
• When projecting a dimension, want to retain full information

• Unfortunately implementation costs some performance...

16 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers

#
arg

um
ent

s

axi
s typ

es
mixe

d
Ad

d(
)

Cl
on

e(
)

weig
hte

d
err

or0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Underflow and Overflow Bins

• Underflow and overflow bins are essential
• When projecting a dimension, want to retain full information

• Unfortunately implementation costs some performance...

16 / 28

triv
ial

Re
gu

la
rA

xi
s

ve
ct

or

mult
i-d

im.
tu

pl
e

var
iad

ic

va
ri

an
t

var
iab

le

Fi
ll

<A
>

cas
t

po
int

ers

#
arg

um
ent

s

axi
s typ

es
mixe

d
Ad

d(
)

Cl
on

e(
)

weig
hte

d
err

or

ove
rflo

w0

2

4

6

tim
e

pe
rfi

ll
[n

s]

Data Export to PGFPlots

namespace EPHist {
namespace Util {

// PGFPlots
void ExportPGFPlotsData (const EPHistForExport &h, std :: ostream &os);
template <typename T>
void ExportPGFPlotsData (const EPHist <T> &h, std :: ostream &os) {

ExportPGFPlotsData (EPHistForExportT <T>(h), os);
}

} // namespace Util
} // namespace EPHist

17 / 28

Data Export to PGFPlots

namespace EPHist {
namespace Util {

// PGFPlots
void ExportPGFPlotsData (const EPHistForExport &h, std :: ostream &os);
template <typename T>
void ExportPGFPlotsData (const EPHist <T> &h, std :: ostream &os) {

ExportPGFPlotsData (EPHistForExportT <T>(h), os);
}

} // namespace Util
} // namespace EPHist

17 / 28

100 101 102
100

101

102

103

104

105

mµµ (GeV)

N
Ev

en
ts

Dimuon mass

CMS Open Data √
s = 8 TeV, Lint = 11.6 fb−1

Conversion to ROOT Histograms

namespace EPHist {
namespace Util {

std :: unique_ptr <TH1I > ConvertToTH1I (const EPHist <int > &h);
// std :: unique_ptr <TH2I > ConvertToTH2I (const EPHist <int > &h);
// std :: unique_ptr <THn > ConvertToTHnI (const EPHist <int > &h);

} // namespace Util
} // namespace EPHist

18 / 28

Conversion to ROOT Histograms

namespace EPHist {
namespace Util {

std :: unique_ptr <TH1I > ConvertToTH1I (const EPHist <int > &h);
// std :: unique_ptr <TH2I > ConvertToTH2I (const EPHist <int > &h);
// std :: unique_ptr <THn > ConvertToTHnI (const EPHist <int > &h);

} // namespace Util
} // namespace EPHist

18 / 28

1 10 210
 (GeV)µµm

1

10

210

310

410

510

E
ve

nt
s

N

Dimuon mass

η
ω,ρ

φ
ψJ/

'ψ
Y(1,2,3S) Z

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls
Dimuon mass

Missing Features

• Categorical axis type
• Profile histograms (mean of another value per bin)

• UHI: Unified / Universal Histogram Interface

• Export to other data formats (?)
• Complete conversion functions to ROOT histograms
• Conversion to other existing solutions?

• Axis range deduction, growing axes?

19 / 28

https://uhi.readthedocs.io/en/latest/

Missing Features

• Categorical axis type
• Profile histograms (mean of another value per bin)

• UHI: Unified / Universal Histogram Interface

• Export to other data formats (?)
• Complete conversion functions to ROOT histograms
• Conversion to other existing solutions?

• Axis range deduction, growing axes?

19 / 28

https://uhi.readthedocs.io/en/latest/

Missing Features

• Categorical axis type
• Profile histograms (mean of another value per bin)

• UHI: Unified / Universal Histogram Interface

• Export to other data formats (?)
• Complete conversion functions to ROOT histograms

• Conversion to other existing solutions?

• Axis range deduction, growing axes?

19 / 28

https://uhi.readthedocs.io/en/latest/

Missing Features

• Categorical axis type
• Profile histograms (mean of another value per bin)

• UHI: Unified / Universal Histogram Interface

• Export to other data formats (?)
• Complete conversion functions to ROOT histograms
• Conversion to other existing solutions?

• Axis range deduction, growing axes?

19 / 28

https://uhi.readthedocs.io/en/latest/

Missing Features

• Categorical axis type
• Profile histograms (mean of another value per bin)

• UHI: Unified / Universal Histogram Interface

• Export to other data formats (?)
• Complete conversion functions to ROOT histograms
• Conversion to other existing solutions?

• Axis range deduction, growing axes?

19 / 28

https://uhi.readthedocs.io/en/latest/

A Note on Sparse Histograms

• Boost.Histogram is templated on Storage, which can be exchanged
• Can implement dense or sparse strategies (e.g. std::unordered map)

• THnSparse stores pairs of coordinates and bin contents

• Could also allocate chunks of bins and perform direct mapping

• In any case, sparse strategy requires optional memory allocation during Fill
• Pessimizes compiler optimizations because of external call
• Even if possible, not sure if it should be implemented in the same class

20 / 28

A Note on Sparse Histograms

• Boost.Histogram is templated on Storage, which can be exchanged
• Can implement dense or sparse strategies (e.g. std::unordered map)

• THnSparse stores pairs of coordinates and bin contents

• Could also allocate chunks of bins and perform direct mapping

• In any case, sparse strategy requires optional memory allocation during Fill
• Pessimizes compiler optimizations because of external call
• Even if possible, not sure if it should be implemented in the same class

20 / 28

A Note on Sparse Histograms

• Boost.Histogram is templated on Storage, which can be exchanged
• Can implement dense or sparse strategies (e.g. std::unordered map)

• THnSparse stores pairs of coordinates and bin contents

• Could also allocate chunks of bins and perform direct mapping

• In any case, sparse strategy requires optional memory allocation during Fill
• Pessimizes compiler optimizations because of external call
• Even if possible, not sure if it should be implemented in the same class

20 / 28

A Note on Sparse Histograms

• Boost.Histogram is templated on Storage, which can be exchanged
• Can implement dense or sparse strategies (e.g. std::unordered map)

• THnSparse stores pairs of coordinates and bin contents

• Could also allocate chunks of bins and perform direct mapping

• In any case, sparse strategy requires optional memory allocation during Fill
• Pessimizes compiler optimizations because of external call
• Even if possible, not sure if it should be implemented in the same class

20 / 28

Comparison with Existing Solutions

Comparison with Existing Solutions

• Benchmark filling 4096 uniform random values [0, 1)
• On one core of AMD Ryzen 9 3900, 3.1 GHz

• Test 1D, 2D, 3D, and 6D histograms from ROOT (master) and Boost (1.84.0)
• 20 bins in each dimension, no Clear() between iterations
• For 1D and 2D: more entries than bins
• For 3D and 6D: less entries than bins (→ used bins in cache!)

• Keep in mind: microbenchmarks DO NOT reflect application performance!

21 / 28

Comparison with Existing Solutions

• Benchmark filling 4096 uniform random values [0, 1)
• On one core of AMD Ryzen 9 3900, 3.1 GHz

• Test 1D, 2D, 3D, and 6D histograms from ROOT (master) and Boost (1.84.0)
• 20 bins in each dimension, no Clear() between iterations
• For 1D and 2D: more entries than bins
• For 3D and 6D: less entries than bins (→ used bins in cache!)

• Keep in mind: microbenchmarks DO NOT reflect application performance!

21 / 28

Comparison with Existing Solutions

• Benchmark filling 4096 uniform random values [0, 1)
• On one core of AMD Ryzen 9 3900, 3.1 GHz

• Test 1D, 2D, 3D, and 6D histograms from ROOT (master) and Boost (1.84.0)
• 20 bins in each dimension, no Clear() between iterations
• For 1D and 2D: more entries than bins
• For 3D and 6D: less entries than bins (→ used bins in cache!)

• Keep in mind: microbenchmarks DO NOT reflect application performance!

21 / 28

One and Two Dimensions

1D 2D
0

5

10

15

ti
m
e
p
er

fi
ll
[n
s]

TH1I / TH2I THnI Boost (static) Boost (dynamic)
RHist<N, int> EPHist<int> EPHist<int> (templated)

22 / 28

More Dimensions: 3D and 6D

3D 6D
0

10

20

30

40

ti
m
e
p
er

fi
ll
[n
s]

TH3I THnI Boost (static) Boost (dynamic)
RHist<N, int> EPHist<int> EPHist<int> (templated)

23 / 28

Multithreaded Histograms

Thoughts on Multithreaded Histograms

• With Boost.Histogram, can use a std::atomic bin content type
• Allows multithreaded filling of a single histogram
• Works fine as long as single bins are not “too contended”

• However changes the type of the histogram
→ Requires to use atomic instructions even for sequential operations

• Ideally we want the template parameter to be the storage type
• A separate interface (FillAtomic) internally implements atomic operations

24 / 28

Thoughts on Multithreaded Histograms

• With Boost.Histogram, can use a std::atomic bin content type
• Allows multithreaded filling of a single histogram
• Works fine as long as single bins are not “too contended”

• However changes the type of the histogram
→ Requires to use atomic instructions even for sequential operations

• Ideally we want the template parameter to be the storage type
• A separate interface (FillAtomic) internally implements atomic operations

24 / 28

Thoughts on Multithreaded Histograms

• With Boost.Histogram, can use a std::atomic bin content type
• Allows multithreaded filling of a single histogram
• Works fine as long as single bins are not “too contended”

• However changes the type of the histogram
→ Requires to use atomic instructions even for sequential operations

• Ideally we want the template parameter to be the storage type
• A separate interface (FillAtomic) internally implements atomic operations

24 / 28

Implementing FillAtomic

• With C++20 we have std::atomic ref
• It “applies atomic operations to the object it references.”

• We can implement it ourselves for our limited use cases:
• Increment operation on integer scalars (with atomic built-in functions)
• Compare-exchange loop for floating point values (using another built-in function)
• Composite types (e.g. DoubleBinWithError) can be implemented in terms of those

25 / 28

Implementing FillAtomic

• With C++20 we have std::atomic ref
• It “applies atomic operations to the object it references.”

• We can implement it ourselves for our limited use cases:
• Increment operation on integer scalars (with atomic built-in functions)
• Compare-exchange loop for floating point values (using another built-in function)
• Composite types (e.g. DoubleBinWithError) can be implemented in terms of those

25 / 28

Multithreaded Filling of Sparse Histograms?

• There are concurrent hash maps that could be used for sparse storage
• Combined with atomic operations described on the previous slide

• For chunked storage, could have a list of atomic pointers
• If allocation is required, atomically exchange new chunk

26 / 28

Multithreaded Filling of Sparse Histograms?

• There are concurrent hash maps that could be used for sparse storage
• Combined with atomic operations described on the previous slide

• For chunked storage, could have a list of atomic pointers
• If allocation is required, atomically exchange new chunk

26 / 28

My Research: Optimized Parallel Filling

• How to deal with contended bins?

• Options include:
• Duplicate histograms and merge in the end
• Filling with atomic operations described in the previous slides
• Having a thread-local buffers to coalesce writes
• Some sort of queuing mechanism?

• Ideally want an interface that automatically chooses the best strategy

27 / 28

My Research: Optimized Parallel Filling

• How to deal with contended bins?

• Options include:
• Duplicate histograms and merge in the end
• Filling with atomic operations described in the previous slides
• Having a thread-local buffers to coalesce writes
• Some sort of queuing mechanism?

• Ideally want an interface that automatically chooses the best strategy

27 / 28

My Research: Optimized Parallel Filling

• How to deal with contended bins?

• Options include:
• Duplicate histograms and merge in the end
• Filling with atomic operations described in the previous slides
• Having a thread-local buffers to coalesce writes
• Some sort of queuing mechanism?

• Ideally want an interface that automatically chooses the best strategy

27 / 28

Conclusions

Conclusions and Takeaways

• Prototype of an efficient histogram class
• Templated on the bin content type, otherwise run-time parameters
• Faster than existing solutions with compile-time axis configuration

• Thoughts for parallel interfaces
• Atomic operations without changing the storage type
• Ideas for sparse histograms & optimized parallel filling

• Prototype code available on GitHub: https://github.com/hahnjo/EPHist

28 / 28

https://github.com/hahnjo/EPHist

Conclusions and Takeaways

• Prototype of an efficient histogram class
• Templated on the bin content type, otherwise run-time parameters
• Faster than existing solutions with compile-time axis configuration

• Thoughts for parallel interfaces
• Atomic operations without changing the storage type
• Ideas for sparse histograms & optimized parallel filling

• Prototype code available on GitHub: https://github.com/hahnjo/EPHist

28 / 28

https://github.com/hahnjo/EPHist

Conclusions and Takeaways

• Prototype of an efficient histogram class
• Templated on the bin content type, otherwise run-time parameters
• Faster than existing solutions with compile-time axis configuration

• Thoughts for parallel interfaces
• Atomic operations without changing the storage type
• Ideas for sparse histograms & optimized parallel filling

• Prototype code available on GitHub: https://github.com/hahnjo/EPHist

28 / 28

https://github.com/hahnjo/EPHist

	Existing Solutions
	Templates vs Run-Time Parameters
	Features Required for Histograms
	Comparison with Existing Solutions
	Multithreaded Histograms
	Conclusions

