Thoughts on Efficient & Parallel Histograms

Jonas Hahnfeld
April 11, 2024



Disclaimers

= NOT the new ROOT histogram package

= Just some ideas and a prototype for my own research

2/28



Disclaimers

= NOT the new ROOT histogram package

= Just some ideas and a prototype for my own research

= Interface and prototype are designed from a computer science perspective

= Possible to implement efficiently, but may be missing features required for physics

2/28



Outline

Existing Solutions

Templates vs Run-Time Parameters
Features Required for Histograms
Comparison with Existing Solutions
Multithreaded Histograms

Conclusions

3/28



Existing Solutions



Quick Look at Existing Solutions (1/2) ()

= ROOT histogram package: TH1, TH2, TH3

= Subclasses for bin content type: TH1I, TH1F, TH1D
= Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

4/28



Quick Look at Existing Solutions (1/2) ()

= ROOT histogram package: TH1, TH2, TH3

= Subclasses for bin content type: TH1I, TH1F, TH1D
= Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

= Multi-dimensional THn and THnSparse (inheriting from THnBase)
= With concrete subclasses THnT<T> and THnSparseT<CONT>

4/28



Quick Look at Existing Solutions (1/2)

= ROOT histogram package: TH1, TH2, TH3

= Subclasses for bin content type: TH1I, TH1F, TH1D
= Everything is a TH1: TH2, TH3; but a TH3 is not a TH2 and TH2D is not a TH1D

= Multi-dimensional THn and THnSparse (inheriting from THnBase)
= With concrete subclasses THnT<T> and THnSparseT<CONT>

= Both use TAxis to store the axis configuration

= TAxis::FindBin switches at run-time between fixed and variable bin sizes

4/28



Quick Look at Existing Solutions (2/2)

= Boost.Histogram (since Boost 1.70)
= Templated on <class Axes, class Storage>
= Static histogram: compile-time std: :tuple of concrete axis types
= Semi-dynamic histogram: variable number of axes (std: :vector)
= Dynamic histograms: std: :vector of dynamic axis: :variant

5/28



Quick Look at Existing Solutions (2/2)

= Boost.Histogram (since Boost 1.70)
= Templated on <class Axes, class Storage>
= Static histogram: compile-time std: :tuple of concrete axis types
= Semi-dynamic histogram: variable number of axes (std: :vector)
= Dynamic histograms: std: :vector of dynamic axis: :variant

= ROOT: :Experimental::RHist prototype for ROOT 7

= Templated on number of DIMENSIONS, PRECISION, and optional bin statistics
= Has a pointer to (abstract, polymorphic) RHistImplBase
= Concrete RHistImpl is templated on processed axis types

= Will not work with RNTuple! (unless unsplit storage)

5/28



Templates vs Run-Time Parameters



Templates vs Run-Time Parameters

= All existing solutions statically type the bin content

= Makes sense, knowledge about the type also essential for |/O

6/28



Templates vs Run-Time Parameters

= All existing solutions statically type the bin content

= Makes sense, knowledge about the type also essential for |/O

= Two approaches for axis configuration in the existing solutions:

1. Dynamic at run-time (TH#* using TAxis)
2. Via templates at compile-time (Boost.Histogram, RHist)

= Possibility to have dynamic axis types, or
= Hide the axis types via a polymorphic pointer

6/28



Understanding the Tradeoffs with Templates

= Templates and inline functions allow compiler optimizations

— least overhead, best performance (?)
= Can lead to very long compile times: 4 minutes for RHist<6, int>!

7/28



Understanding the Tradeoffs with Templates

= Templates and inline functions allow compiler optimizations

— least overhead, best performance (?)
= Can lead to very long compile times: 4 minutes for RHist<6, int>!

= Excessive templating complicates 1/0

= At least with ROOT, need to know concrete type
= Boost.Histogram mentions dynamic Python bindings

= Probably less of a problem with flexibility of PyROOT / cppyy

7/28



Understanding the Tradeoffs with Templates

= Templates and inline functions allow compiler optimizations

— least overhead, best performance (?)
= Can lead to very long compile times: 4 minutes for RHist<6, int>!

= Excessive templating complicates 1/0

= At least with ROOT, need to know concrete type
= Boost.Histogram mentions dynamic Python bindings

= Probably less of a problem with flexibility of PyROOT / cppyy

= ... and user code: either templated as well or very long types

7/28



Understanding the Tradeoffs with Templates

= Templates and inline functions allow compiler optimizations

— least overhead, best performance (?)
= Can lead to very long compile times: 4 minutes for RHist<6, int>!

= Excessive templating complicates 1/0

= At least with ROOT, need to know concrete type
= Boost.Histogram mentions dynamic Python bindings

= Probably less of a problem with flexibility of PyROOT / cppyy

= ... and user code: either templated as well or very long types

= Question: How much do we actually lose with dynamic axes configuration?

= Which tricks can we play to recover performance?

7/28



A Most Trivial Histogram Prototype

= EPHist<T> templated on bin content type

8/28



A Most Trivial Histogram Prototype

= EPHist<T> templated on bin content type

= Implement trivial Fill function for one dimension of fixed bins

void Fill(double x) {
std::size_t bin = (x - fLow) * fInvBinWidth;
assert(bin >= 0 && bin < fNumBins);
fData[bin]++;

8/28



A Most Trivial Histogram Prototype

= EPHist<T> templated on bin content type
= Implement trivial Fill function for one dimension of fixed bins

= Benchmark filling 4096 uniform random values [0, 1) into 20 bins

void Fill(double x) {

std::size_t bin = (x - fLow) * fInvBinWidth;
assert(bin >= 0 && bin < fNumBins);
fData[bin]++;

8/28



A Most Trivial Histogram Prototype

time per fill [ns]

EPHist<T> templated on bin content type
Implement trivial Fill function for one dimension of fixed bins

Benchmark filling 4096 uniform random values [0, 1) into 20 bins

2
1
°
0 \
@

8/28



Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

- 2
ach
g 1| )
o
*—e

(]
£
-

,4\%4«/‘3

¥

N4

N

52

¥ 9/28



Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

2. Wrap RegularAxis in a std::vector

time per fill [ns]

9/28



Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

»

Wrap RegularAxis in a std: :vector

&2

Implement multi-dimensional histograms

time per fill [ns]

9/28



Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type

»

Wrap RegularAxis in a std: :vector

&2

Implement multi-dimensional histograms
— Add a second benchmark configuration (4096 values into 20 x 20 bins)

time per fill [ns]

9/28



Multi-Dimensional Histograms

1. Refactor bin computation into RegularAxis type
2. Wrap RegularAxis in a std::vector
3. Implement multi-dimensional histograms
— Add a second benchmark configuration (4096 values into 20 x 20 bins)

- 2
=t
&= o—o—©
g 1| )
o o—eo—90 0o
)
= 0 \ \ \ \ \ \
)
N ¢ < @ O
RN . $
é\A\ Vﬁ_:y C;)(JO, ,b\ié» &\,bb
,\:z;(’ AN RO
& N
@

X 9/28



Different Axis Types

- 6
=)
= 4f 1
9]
o o |
£ S
oo o o o o
50 I T T T T 7
RS R
D' N 0Y. N N
S S P
N RIS R
A

QS 10/28



Different Axis Types

1. Wrap RegularAxis in a std::variant

time per fill [ns]
N
T
|

QS 10/28



Different Axis Types

1. Wrap RegularAxis in a std::variant

R

Implement an axis type with variable bins

time per fill [ns]
N
T T
o k
|

10/28



Optimizing Performance: A little bit of templating

= Does it help to template only the Fill method?

(@)

time per fill [ns]
SIS
I I
7
/|
S
@, R
| |

0 | | | | | | | |
O SRR SO
S & .\,b\io (\’bb &/«,"’9 &
RN @ °
>
oo

11/28



Optimizing Performance: A little bit of templating

= Does it help to template only the Fill method?

(@)

time per fill [ns]

o
7.
QA

11/28



Optimizing Performance: Access into std::variant (1/2) ﬁ

= std::get and std::get_if need to check what alternative is held by variant

= Otherwise throw exception or return null pointer value

12/28



ng Performance: Access into std::variant (1/2) ﬁ

= std::get and std::get_if need to check what alternative is held by variant

= Otherwise throw exception or return null pointer value

= In our case, content of std: :variant is constant during Fill

= For templated Fill, we even know what content we expect!

12/28



ng Performance: Access into std::variant (1/2) ﬁ

= std::get and std::get_if need to check what alternative is held by variant

= Otherwise throw exception or return null pointer value

= In our case, content of std: :variant is constant during Fill

= For templated Fill, we even know what content we expect!

= Implementations in libstdc4++ and libc++ put union as first member

= Can just reinterpret_cast a pointer to the std: :variant
= (in the constructor, check once that std::get_if returns the same pointer)

12/28



Optimizing Performance: Access into std::variant (1/2) ﬁ

time per fill [ns]

R 12/28



Optimizing Performance: Access into std::variant (1/2) ﬁ

- 6
=
F 4 :
9]
o 27 _
(0]
£ .
= \\ \ ’9\ \ Q;‘ (,‘ &'\ Q,‘ 7\ &\
A A SRR P S NI
SF ERE ST S ¢
P 2 & 3 O
R S & <
) <&
(%)

R 12/28



Optimizing Performance: Access into std::variant (2/2) ﬁ

= Better solution: cache the pointer returned by std::get_if

- 6
=
E 4 :
9]
o 27 _
(0]
£ .
) 0 \\ 9\ | | QJ\ (J\ &)\ | | &\
BRGNS S S
RO AR AN PG GROA SIS
P 2 & 3 O
g > 4 <
¢§ <&
(%)

R 13/28



Optimizing Performance: Access into std::variant (2/2) ﬁ

= Better solution: cache the pointer returned by std::get_if

= When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8

= Lower three bits are available (standard trick in low-level optimizations)
= Can be used to encode the value of index()

- 6
=
E 4 :
9]
o 2 [ _
(0]
£ -
= g \ “o‘ ’9\ \ Q;‘ (,‘ &'\ Q,‘ 7\ =
2~ 0 NN AN )
S SIS B¢
P 2 & 3 O
e S 4 <
)

13/28



Optimizing Performance: Access into std::variant (2/2) ﬁ

= Better solution: cache the pointer returned by std::get_if

= When aligning the axis types to 8 bytes, the pointers end in 0x0 or 0x8

= Lower three bits are available (standard trick in low-level optimizations)
= Can be used to encode the value of index()

- 6
5,
z 4f -
o
o ol |
[0}
S
= \ "o‘ ’9\ \ e\ (,‘ &)\ Q,‘ 7\ &\ 6)\
2~ 0 NN A o7 o\
)é \4\)(3’47 ®o \,6\6;09 ,é \,bb’é;yrbk \,50/9'3* o’bé \6@:
&fo RN 7 ey Q

13/28



Features Required for Histograms




Adding Checks for Fill Arguments and Axis Types

0
=,
E
9]
= gL |
£ A—O—O—O—O—v—/_éi
=
+ NI .
N\

SN TR BN oA &
ARSI ORI I A g o
\9-:04\} 0@ ey Q
)

QS 14 /28



Adding Checks for Fill Arguments and Axis Types

= Number of arguments must match dimension of histogram

(@]

o
T
\

time per fill [ns]
N
I

;? %/
|

0 \\ | | | | | | | | | | |

o 3o

@7 QS Y Y Y L
QYA x QxS RIS SO R IENEN
SN0 ‘.0,6 S Iy @y S <

Q
QS X 14 /28



Adding Checks for Fill Arguments and Axis Types

Number of arguments must match dimension of histogram

= Axis types in templated Fill must match

= 6
5,
E 4r ]
o
o 27 |
[0}
S
s 0 N ’9‘ ‘ Qz‘ (J‘ K;‘ QJ‘ 7‘ X 6)‘ c,‘ (,\

P &0 Q. > R I

S & .,6\@\& \’bb .,\;§ P »B’ FE S &

AR SRR N A e SRS

¢§/ ¥ IR 3¢ RO
¥ X 14/28



Adding More Functions ﬁ

= Constructor to allow “mixed” histograms (regular and variable bin axes)

15/28



Adding More Functions ﬁ

= Constructor to allow “mixed” histograms (regular and variable bin axes)

= Add() to merge two histograms, explicit Clone () (instead of copy constructor)

15/28



Adding More Functions ﬁ

= Constructor to allow “mixed” histograms (regular and variable bin axes)

= Add() to merge two histograms, explicit Clone () (instead of copy constructor)

= Weighted Fills

= Only allowed for floating point bins (static_assert)

15/28



Adding More Functions ﬁ

= Constructor to allow “mixed” histograms (regular and variable bin axes)

Add () to merge two histograms, explicit Clone () (instead of copy constructor)

Weighted Fills

= Only allowed for floating point bins (static_assert)

= Bin content errors: DoubleBinWithError

= Corollary: cannot merge EPHist<double> and EPHist<DoubleBinWithError>
= Maybe this is good? If needed, have to / can define explicit semantics

15/28



(7))
=
9
s
(6]
c
=1
L.
()
S
W
o0
£
=]
=]
<

| |
O < N o

[su] 1)y 45d swn

15/28



Underflow and Overflow Bins

= Underflow and overflow bins are essential

= When projecting a dimension, want to retain full information

= 6
=
F 4 :
9]
o 27 _
(0]
e
i= 0 \\ 9\ ’9\ | QJ\ (J\ &)\ QJ\ 7\ &/\ %\ 6’\ | b\ \\ \\ b\ «\
R . N A o N X2 O QO e’ O
S R PP P S o
DR O Y A D DR @vxo"\’@éo
> & &7 X0y O oY &

<
Q;»Q’éo % 16/28



Underflow and Overflow Bins

= Underflow and overflow bins are essential

= When projecting a dimension, want to retain full information

= Unfortunately implementation costs some performance...

time per fill [ns]

16 /28



Data Export to PGFPlots

namespace EPHist {
namespace Util {

// PGFPlots

void ExportPGFPlotsData(const EPHistForExport &h, std::ostream &os);

template <typename T>

void ExportPGFPlotsData(const EPHist<T> &h, std::ostream &os) {
ExportPGFPlotsData (EPHistForExportT<T>(h), os);

} // namespace Util
} // namespace EPHist

17/28



Data Export sgald

Dimuon mass

CMS Open Data V5 =8TeV, Lint = 11.6 b~ !
namespace %\ T T T T TTT T T T T T T TTT T T T T T T TTT §
namespace 10° é é
// PGFPlo ol i
void Expo: E 1 m &os);

@2 B §

template « & i 1

P 2103k E
void Expo: (@ B 1 1 {

ExportP( = B )

102 | 5

} B E

1l ]

} // name. 10 g il

} // name 100: Lol Lol |
10° 10 102
My, (GeV)

17/28



Conversion to ROOT Histograms

namespace EPHist {
namespace Util {

std::unique_ptr<TH1I> ConvertToTH1I (const EPHist<int> &h);
// std::unique_ptr<TH2I> ConvertToTH2I (const EPHist<int> &h);

// std::unique_ptr<THn> ConvertToTHnI (const EPHist<int> &h);

} // namespace Util
} // namespace EPHist

18/28



Conversion tg
Dimuon mass

CMS Open Data (s=8Tev,L =116f"
8
8 C
Z 10°
10 qPe Iy
namespace - . Y(1,2,39) z
v .
namespace 10 3
std::uniq 10°
// std::u E
// std::u 102?
Y} // name. -
10;
} // name. =
1
Ev vl
1 10 107
m,, (GeV)
v

18/28



Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)

19/28


https://uhi.readthedocs.io/en/latest/

Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)

= UHI: Unified / Universal Histogram Interface

19/28


https://uhi.readthedocs.io/en/latest/

Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)

= UHI: Unified / Universal Histogram Interface

= Export to other data formats (?)

= Complete conversion functions to ROOT histograms

19/28


https://uhi.readthedocs.io/en/latest/

Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)
= UHI: Unified / Universal Histogram Interface
= Export to other data formats (?)

= Complete conversion functions to ROOT histograms

= Conversion to other existing solutions?

19/28


https://uhi.readthedocs.io/en/latest/

Missing Features

= Categorical axis type

= Profile histograms (mean of another value per bin)
= UHI: Unified / Universal Histogram Interface

= Export to other data formats (?)

= Complete conversion functions to ROOT histograms

= Conversion to other existing solutions?

= Axis range deduction, growing axes?

19/28


https://uhi.readthedocs.io/en/latest/

A Note on Sparse Histograms

= Boost.Histogram is templated on Storage, which can be exchanged

= Can implement dense or sparse strategies (e.g. std: :unordered map)

20/28



A Note on Sparse Histograms

= Boost.Histogram is templated on Storage, which can be exchanged

= Can implement dense or sparse strategies (e.g. std: :unordered map)

= THnSparse stores pairs of coordinates and bin contents

20/28



A Note on Sparse Histograms

= Boost.Histogram is templated on Storage, which can be exchanged

= Can implement dense or sparse strategies (e.g. std: :unordered map)

= THnSparse stores pairs of coordinates and bin contents

= Could also allocate chunks of bins and perform direct mapping

20/28



A Note on Sparse Histograms

= Boost.Histogram is templated on Storage, which can be exchanged

= Can implement dense or sparse strategies (e.g. std: :unordered map)

= THnSparse stores pairs of coordinates and bin contents

Could also allocate chunks of bins and perform direct mapping

= In any case, sparse strategy requires optional memory allocation during Fill

= Pessimizes compiler optimizations because of external call
= Even if possible, not sure if it should be implemented in the same class

20/28



Comparison with Existing Solutions




Comparison with Existing Solutions

= Benchmark filling 4096 uniform random values [0, 1)
= On one core of AMD Ryzen 9 3900, 3.1 GHz

21/28



Comparison with Existing Solutions

= Benchmark filling 4096 uniform random values [0, 1)
= On one core of AMD Ryzen 9 3900, 3.1 GHz

= Test 1D, 2D, 3D, and 6D histograms from ROOT (master) and Boost (1.84.0)

= 20 bins in each dimension, no Clear () between iterations
= For 1D and 2D: more entries than bins
= For 3D and 6D: less entries than bins (— used bins in cache!)

21/28



Comparison with Existing Solutions

= Benchmark filling 4096 uniform random values [0, 1)
= On one core of AMD Ryzen 9 3900, 3.1 GHz

= Test 1D, 2D, 3D, and 6D histograms from ROOT (master) and Boost (1.84.0)

= 20 bins in each dimension, no Clear () between iterations
= For 1D and 2D: more entries than bins
= For 3D and 6D: less entries than bins (— used bins in cache!)

= Keep in mind: microbenchmarks DO NOT reflect application performance!

21/28



One and Two Dimensions

15 - m .
7
z _
g 10p — 8
g
o8
]
£ 5 :
0 1
1D 2D
DoTH1T / TH2T  [OTHNI J0Boost (static) BEBoost (dynamic)

BURHist<N, int>NNEPHist<int>[DEPHist<int> (templated)

22/28



More Dimensions: 3D and 6D

N
o
T
|
|

W
s}
T
|

time per fill [ns]
DO
S
|

—
)
T
|

: |

3D 6D

0oTH3I 0 THnI U0 Boost (static) BEBoost (dynamic)
BURHist<N, int>NNEPHist<int>[DEPHist<int> (templated)

23/28



Multithreaded Histograms




Thoughts on Multithreaded Histograms

= With Boost.Histogram, can use a std: :atomic bin content type

= Allows multithreaded filling of a single histogram
= Works fine as long as single bins are not “too contended”

24 /28



Thoughts on Multithreaded Histograms

= With Boost.Histogram, can use a std: :atomic bin content type

= Allows multithreaded filling of a single histogram
= Works fine as long as single bins are not “too contended”

= However changes the type of the histogram

— Requires to use atomic instructions even for sequential operations

24 /28



Thoughts on Multithreaded Histograms

= With Boost.Histogram, can use a std: :atomic bin content type

= Allows multithreaded filling of a single histogram
= Works fine as long as single bins are not “too contended”

= However changes the type of the histogram

— Requires to use atomic instructions even for sequential operations

= |deally we want the template parameter to be the storage type

= A separate interface (FillAtomic) internally implements atomic operations

24 /28



Implementing FillAtomic

= With C4++20 we have std: :atomic_ref

= |t “applies atomic operations to the object it references.”

25/28



Implementing FillAtomic

= With C4++20 we have std: :atomic_ref

= |t “applies atomic operations to the object it references.”

= We can implement it ourselves for our limited use cases:
= Increment operation on integer scalars (with __atomic built-in functions)
= Compare-exchange loop for floating point values (using another built-in function)
= Composite types (e.g. DoubleBinWithError) can be implemented in terms of those

25/28



Multithreaded Filling of Sparse Histograms?

= There are concurrent hash maps that could be used for sparse storage

= Combined with atomic operations described on the previous slide

26/28



Multithreaded Filling of Sparse Histograms?

= There are concurrent hash maps that could be used for sparse storage

= Combined with atomic operations described on the previous slide

= For chunked storage, could have a list of atomic pointers

= |f allocation is required, atomically exchange new chunk

26/28



My Research: Optimized Parallel Filling

= How to deal with contended bins?

27/28



My Research: Optimized Parallel Filling

= How to deal with contended bins?

= Options include:
= Duplicate histograms and merge in the end
= Filling with atomic operations described in the previous slides
= Having a thread-local buffers to coalesce writes
= Some sort of queuing mechanism?

27/28



My Research: Optimized Parallel Filling

= How to deal with contended bins?

= Options include:

= Duplicate histograms and merge in the end

= Filling with atomic operations described in the previous slides
= Having a thread-local buffers to coalesce writes

= Some sort of queuing mechanism?

= |deally want an interface that automatically chooses the best strategy

27/28



Conclusions




Conclusions and Takeaways

= Prototype of an efficient histogram class

= Templated on the bin content type, otherwise run-time parameters
= Faster than existing solutions with compile-time axis configuration

28/28


https://github.com/hahnjo/EPHist

Conclusions and Takeaways

= Prototype of an efficient histogram class

= Templated on the bin content type, otherwise run-time parameters
= Faster than existing solutions with compile-time axis configuration

= Thoughts for parallel interfaces

= Atomic operations without changing the storage type
= |deas for sparse histograms & optimized parallel filling

28/28


https://github.com/hahnjo/EPHist

Conclusions and Takeaways

= Prototype of an efficient histogram class

= Templated on the bin content type, otherwise run-time parameters
= Faster than existing solutions with compile-time axis configuration

= Thoughts for parallel interfaces

= Atomic operations without changing the storage type
= |deas for sparse histograms & optimized parallel filling

= Prototype code available on GitHub: https://github.com/hahnjo/EPHist

28/28


https://github.com/hahnjo/EPHist

	Existing Solutions
	Templates vs Run-Time Parameters
	Features Required for Histograms
	Comparison with Existing Solutions
	Multithreaded Histograms
	Conclusions

