

Medium-induced modification of jet-like azimuthal correlations with heavy-flavor triggers

Deepa Thomas

Jet Modification and Hard-Soft Correlations (SoftJet 2024) 27-29 September 2024

- Two-particle angular correlations with a high $p_{\rm T}$ trigger —> complementary method to jet ** reconstruction to characterize jets and their properties, especially at low $p_{\rm T}$.
- * Heavy quarks are produced in hard scattering process with high Q^2
 - * Emit gluon radiation generating a parton shower and hadronize heavy quark jet
- Angular correlations with a heavy-flavor particle trigger allows study of heavy-flavor jet properties.

$$\Delta \varphi (\text{HF} - h) = \varphi_{\text{trig}}^{\text{HF}} - \varphi_{\text{asso}}^{\text{h}}$$

- Typical structure at LO:
 - Near-side: $\Delta \phi \approx 0$
 - Associated particles from same jet as trigger
 - Away-side: $\Delta \phi \approx \pi$
 - Associated particles from the recoil jet

Introduction

2

Associated

 $\approx \pi$

 ΔO

Run 2 -> Run 3: several upgraded detectors

Relevant upgrades:

New Inner Tracker System (ITS2)

 Full pixels; closer to interaction point (39 mm -> 23 mm); Improved impact parameter resolution (factor of 2); Faster readout

New Time Projection Chamber (TPC) readout

 Continuous readout -> large statistics at higher interaction rates

Well suitable for new and differential HF measurements

$\Delta \varphi(D^+ - h)$ correlations in pp collisions

HF-h correlations characterizes:

- Angular profile : fit with Generalized Gaussian or von Mises to describe the near-side and away-side peaks
- Associated particle multiplicity
- Momentum distribution vs $p_{\mathrm{T}}^{\mathrm{trigger}}$ and $p_{\mathrm{T}}^{\mathrm{asso}}$
- With increasing $p_{T}^{trigger}$
 - higher associated yield from more energetic HF parton ALI-PREL-581341 -> more phase phase for fragmentation
 - larger heavy quark boost —> more collimated peaks

HF-h correlations in pp

 $\Delta \varphi(c, b - > e - h)$ correlations in pp collisions

- * With increasing $p_{\rm T}^{\rm asso}$
 - decreasing associated yield due harder fragmentation of heavy quarks -> less energy remaining for higher $p_{\rm T}$ associated particles
 - more collimated peaks on NS

Correlation distributions in p-Pb collisions consistent with **ALI-PUB-563957** * pp collisions.

HF-h correlations in pp

Comparison with MC models

Validation of parton-shower and Monte Carlo generators

PYTHIA6 Perugia 2011 PYTHIA8, Tune 4C HERWIG POWHEG+PYTHIA8 POWHEG+PYTHIA8 LO EPOS 3.117

- * Overall $p_{\rm T}^{\rm trigger}$ and $p_{\rm T}^{\rm asso}$ dependent trends described by PYTHIA, POWHEG and HERWIG models.
- EPOS tends to overestimate the NS results.
- PYTHIA 8 and POWHEG+PYTHIA8 gives the best description overall.

Strange HF hadron correlations in pp

$\Delta \varphi(D_s^+ - h)$ correlations in pp collisions: study fragmentation mechanism

- ✤ Larger sample collected in Run 3 allows correlations with D_s+ trigger (not accessible in Run 2).
- * Near-side: significantly lower associated yield for D_s+ compared to D+ at low $p_{\rm T}^{\rm trigger}$; Consistent at higher $p_{\rm T}^{\rm trigger}$.
- * Away side: similar distributions for D_{s^+} and D^+ triggered correlations in the full $p_{\rm T}$ range measured.

- Solution State side peak at low $p_{\rm T}^{\rm D_s^+}$; describe the away-side peak, and the full distribution for $p_{T}^{D_{s}^{+}}$ > 5 GeV/c
- Possible explanation for the difference: harder fragmentation of charm quark into D_s⁺ than non**strange D mesons** (consistent with z_{\parallel} measurement)

HF baryon correlations in pp

 $\Delta \varphi (\Lambda_c^+ - h)$ correlations in pp collisions: study baryon hadronization mechanism

ALI-PREL-539961

- Larger Λ_c^+/D^0 ratio measured in pp compared to e^+e^- at low and intermediate p_T .
- PYTHIA with CR-BLC modes, and models with coalescence describes the data within uncertainty.

• Λ_c^+ triggered correlations compared to D-meson.

• Trend of enhanced correlation peaks at low $p_{T}^{\Lambda_{c}^{+}}$ and p_{T}^{asso} .

• Different tunes of PYTHIA underestimate the peaks at low $p_{T}^{\Lambda_{c}^{+}}$; describe the data at higher $p_{\mathrm{T}}^{\Lambda_{\mathrm{c}}^{+}}$

HF baryon correlations in pp

- Peak yields and widths extracted for near- and away-side.
- Higher yield for Λ_c^+ at low p_T^{trigger} .
- Peak widths lower for Λ_c^+ compared to D-mesons.

Possible explanations:

- softer fragmentation of charm quark into Λ_c^+ **than D mesons** (consistent with z_{\parallel} measurement)
- Decay of higher mass charm states (SHM+RQM)
- Hadronization by coalescence impacting the mean p_T and associated particle multiplicity -> exploring with models

ALI-PREL-539990

Ratio to D-h

 Λ_c^+

D meson

Associated yield

0.5

- Heavy quarks traverse the QGP medium and undergo energy loss via elastic collisions and gluon * radiation.
 - Energy available for parton shower can be different from in-vacuum fragmentation changing the fragmentation function
 - High-momentum partons propagating through the medium lead to modifications in the QGP due to injection of energy and momentum lost by the jet into the plasma
 - Correlation between the bulk dynamics of the medium and the jet
- Angular correlations of HF trigger particle and charged hadrons provide insights into these effects.
- * The per-trigger nuclear modification factor (I_{AA}) of peak yields can be used to study the effect of the QGP medium

$$I_{\rm AA} = \frac{Y_{\Delta\varphi}^{\rm Pb-Pb}}{Y_{\Delta\varphi}^{\rm pp}}$$

HF correlations in Pb-Pb

HF-h correlations in Pb-Pb

- Azimuthal correlations of c,b -> e and charged hadrons in 0-10% and 30-50% Pb-Pb collisions
- Uncorrelated background subtracted by fitting a ** baseline function to the transverse region, including elliptic flow modulation:

 $B(\Delta \varphi) = b[1 + 2v_2^{c,b->e}v_2^{ch}\cos(2\Delta \varphi)]$

- ♦ 0 10% centrality:
 - Near-side peak slightly higher in Pb—Pb compared to pp at low $p_{\rm T}^{\rm asso}$
 - Away-side peak shape differs significantly as $p_{\rm T}^{\rm asso}$ increases
 - higher and broader peak for $p_{\rm T}^{\rm asso} < 2 \ {\rm GeV/c}$
 - peak quenched for $p_{\rm T}^{\rm asso} > 4 \, {\rm GeV/c}$
- 30 50% centrality: *
 - Near side peak similar in pp and Pb—Pb
 - Away-side peak lower in Pb—Pb compared to pp

The per-trigger nuclear modification factor (I_{AA}) in 0–10% Pb-Pb

- \star *I*_{AA} for **c,b** -> **e** compared to K_s^0 -hadron and di-hadron correlations
 - Similar trends for LF and HF triggers
 - Caveats for comparing LF and HF: different hadron-toparton $p_{\rm T}$ scale; additional decay kinematics for c,b -> e

Near- and away-side IAA

Near-side: •

- I_{AA} trends above unity (1.3 σ) at low p_T^{asso} ; $I_{AA} \sim 1$ at high p_T^{asso}
- ✤ Away-side:
 - hint of suppression (2.5 σ) for $p_{\rm T}^{\rm asso}$ > 4 GeV/c

The per-trigger nuclear modification factor (I_{AA}) in 30–50% Pb-Pb

- ✤ Near-side:
 - *I*_{AA} consistent with unity

Near- and away-side IAA

Away-side:

• hint of suppression for $p_{\rm T}^{\rm asso}$ > 3 GeV/c

- heavy-flavor jet fragmentation and its modification in the presence of a QGP medium.
- pp collisions:
 - Non-strange charm meson correlations well described by PYTHIA 8 MC simulations.
 - Different correlation peak distributions observed for D_{s^+} and charm baryons -> not described by MC
 - operation possible effects from different fragmentation.
- ✤ Pb—Pb collisions:
 - Presence of QGP affects the angular correlation distributions.

 - * Hint of suppression of associated particle yield at low $p_{\rm T}^{\rm asso}$ on the away-side.
 - \bullet I_{AA} for heavy-flavor triggered correlations similar to light-flavor triggers.

* **Run 3**:

- Access to beauty sector.
- ✤ New observables such as 2D correlations, HF HF correlations.

Summary

Azimuthal angular correlations of heavy-flavor trigger and charged hadrons -> study and characterize

* Trends of higher associated particle yield at low $p_{\rm T}^{\rm asso}$ on the near-side correlations in central Pb-Pb collisions.

* Improve precision and granularity of current measurements with higher statistics extending the p_{T} reach.

BACK UP

Study charm jet fragmentation functions

- Hint of softer fragmentation of charm quarks to Λ_c compared to D⁰ mesons.
- PYTHIA 8 with CR describes the data

Fragmentation Function

- Hint of harder fragmentation of charm quarks to D_s⁺ compared to D⁰ mesons.
- MC does not describe large Z_{ll}^{ch}

Strange HF hadron correlations in pp

ALI-PREL-581213

Strange HF hadron correlations in pp

 $\Delta \varphi (D_s^{+} - h)$ correlations in pp collisions

Deepa Thomas

HF baryon correlations in pp

Deepa Thomas