Backreaction of QGP fluids from recoil partons

Shoto Sakuma, Tetsufumi Hirano Sophia University

SOPHIA HADRON PHYSICS GROUP

Introduction

SOPHIA HADRON PHYSICS GROUP

Jet in heavy-ion collision

Jet in heavy-ion collision

JEWEL Korinna C. Zapp, Phys. Lett. B735 (2014)

LBT T. Luo *et al.*, PLB782, 707-716 (2018)

Recoil

Medium parton kicked out by jet parton

- acquires high energy and momentum
- becomes non-equilibrated parton

Recoil and backreaction

JEWEL Korinna C. Zapp, Phys. Lett. B735 (2014)

LBT T. Luo *et al.*, PLB782, 707-716 (2018)

Recoil

Medium parton kicked out by jet parton

acquires high energy and momentum

becomes non-equilibrated parton

Energy and momentum of jet partons are modified

Recoil and backreaction

CoLBT-hydro W. Chen, *et al.*, PLB 777, 86 (2018)

Recoil and backreaction

CoLBT-hydro W. Chen, *et al.*, PLB 777, 86 (2018)

Backreaction

Purpose

Investigate the effect of "dynamical" backreaction of QGP To understand jet-medium interaction

medium parton

QGP

Framework

SOPHIA HADRON PHYSICS GROUP

Negative source term for backreaction

Hydrodynamic eq. with "negative" source term

$$\partial_{\mu} T^{\mu\nu}_{\rm QGP} = -J^{\nu}$$

Gaussian source

$$J^{\nu} = \sum_{i} \frac{dp_{Q_{i}}^{\nu}}{dt} \frac{G(x - x_{Q_{i}})}{3D-Gaussian function}$$

$$G(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{Q}_i}) = \left(\frac{1}{2\pi\sigma_{\mathrm{G}}^2}\right)^{\frac{3}{2}} \exp\left[-\frac{\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{Q}_i}\right)^2}{2\sigma_{\mathrm{G}}^2}\right]$$

 $p^{\mu}_{\mathbf{Q}_{i}}, \mathbf{x}_{\mathbf{Q}_{i}}$: energy-momentum and position of recoiled medium partons

 $\sigma_{
m G}$: width of gaussian

■ (3+1)-D ideal hydro
 ■ non-expanding system
 ■ conformal EoS

Test calculation

Test calculation

Э

(GeV/fm³)

Elastic process

Static QGP brick

Z. Xu and C. Greiner, Phys. Rev. C 71, 064901(2005)

Backreaction of QGP fluids from recoil partons

 $gg \rightarrow gg$, $q\bar{q} \rightarrow q\bar{q}$, $gq \rightarrow gq \dots$

Medium response

*E*_{thr}: threshold of recoil

Set up of the simulation

F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974)

SoftJet 2024

Results

SOPHIA HADRON PHYSICS GROUP

Effect of backreaction

Effect of backreaction

No significant effect by backreaction

Backreaction modifies total $dN/d\varphi$

Interplay between backreaction vs deposition

 $E_{\text{thr}} = 4T, 6T, 8T$ T: local temperature

total (jet parton + medium parton)

Interplay between backreaction vs deposition

 $E_{\rm thr} = 4T, 6T, 8T$ T: local temperature

Different particle ratio of jet parton to medium parton

Interplay between backreaction vs deposition

 $E_{\rm thr} = 4T$

 $E_{\rm thr} = 4T, 6T, 8T$ T: local temperature

Backreaction of QGP fluids from recoil partons

 $E_{\rm thr} = 8T$

Summary and outlook

- We introduced hydrodynamic equation with "negative" source term to describe the backreaction of QGP dynamically
- Movement of hole and wake behind the hole
- Scattering dynamics is crucial to backreaction Modifies $dN/d\varphi$ of medium partons

Outlook

- Use PYTHIA for initial jet partons & analyze the jet structure function
- Include backreaction to Dynamical Core-Corona Initialization (DCCI) to compare with experiment
 Y. Kanakubo *et al.*, Phys. Rev. C 105 , 024905 (2022)

Back up

Dynamical hole effect

Subtracted

Threshold of recoil $E_{thr} = 4T, 6T, 8T$

Setting: $T_0 = 500 \text{ MeV}, \text{type}_0 = g, \ p_0^{\mu} = (50 \text{ GeV}, \ 50 \text{ GeV}, \ 0, \ 0), \ t_{\text{sw}} = 2.0 \text{ fm/c} \ 5000 \text{ events}$

w. energy loss, w. deposition, w. recoil

