No-quenching baseline for energy-loss signals in oxygen-oxygen collisions

Aleksas Mazeliauskas, aleksas.eu Institute for Theoretical Physics, Heidelberg University

September 29, 2024 SoftJet 2024, Tokyo

- Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann, PRL (2021) arXiv:2007.13754
 PRC (2021) arXiv:2007.13758
- Brewer, Huss, AM, van der Schee PRD (2022), arXiv:2108.13434
- Belmont et al. NPA (2024), 2305.15491
- Gebhard, AM, Takacs, arXiv:2410.xxxx

Jannis Gebhard

Adam Takacs

www.isoquant-heidelberg.de

Small system puzzle

Observation of **collective flow** in protonnucleus, peripheral nucleus-nucleus and even proton-proton!

Thanks to Jannis Gebhard for help preparing these slides

Motivation for light-ion collisions

Inconclusive energy loss signals in pA and peripheral AA collisions

- \rightarrow OO probes similar size
- symmetric collision system
- better understood geometry
- LHC \rightarrow at 6.8 TeV in 2025
- STAR took data at 200 GeV in 2021

How to detect energy loss phenomena?

No-quenching baseline

a prediction excluding medium effects

Measure deviation from the baseline.

Perturbative QCD baseline

For high-momentum-exchange processes can use QCD factorization

 $\sigma_{ab\to X} = f_a(x_a) f_b(x_b) \cdot \hat{\sigma}_{ab\to x} \cdot S_{x\to X}$ parton distribution functions partonic scattering final state evolution

- systematically improvable (LO, NLO,...) baseline predictions
- quantifiable uncertainty (scale, nPDF,...)

We will compute NLO pQCD baseline for $R_{AA}\xspace$ and $I_{AA}\xspace$ in OO

Conclusions (in the interest of time)

- OO collisions \rightarrow opportunity to understand energy loss in small systems
- Discovery of small effects needs precise no-quenching baseline
- Uncertainties in nPDFs is the dominant baseline uncertainty
- Semi-inclusive observables are not free of nPDF uncertainties but few percent uncertainty can be achieved for jet-triggered hadron I_{AA}

Inclusive nuclear modification factor R_{AA}

Sources of uncertainties in the baseline

$$R_{AA, \text{ min bias}}^{h,j}(p_T) = \frac{1}{A^2} \frac{d\sigma_{AA}^{h,j}/dp_T(\mu_R,\mu_F)}{d\sigma_{pp}^{h,j}/dp_T(\mu_R,\mu_F)} \xleftarrow{} \text{oxygen nPDF}$$
renormalization, factorization scales

- Overlap of LO, NLO scale "uncertainties" → perturbative convergence.
 → Expect cancellation of scale dependence in the ratio.
- Propagate uncertainties in proton and nuclear modified PDFs.
 → Expect partial cancellation in the ratio.
- Hadronization, showering and fragmentation uncertainties.
 → Independent of the collision system and should cancel.

Jet and hadron R_{AA} @ 7TeV in 2020

- NLO partonic jets with NNLOJET
- NLO hadrons with INCNLO
- Extrapolation of hadron energy loss to minimum bias OO

Huss et al., PRL (2021), PRC (2021)

Hadronization and parton shower effects

• NLO hadronic jets with POWHEG+Pythia8

Scale, shower and hadronization uncertainties cancel Aleksas Mazeliauskas, aleksas.eu

Jet and hadron R_{AA} @ 200TeV in 2023

- LO partonic jets
- NLO hadrons with INCNLO
- New sets of nPDFs (2021)

hadrons

Predictions for sPHENIX, Belmont et al. NPA (2024)

Sizable nPDF uncertainties for oxygen-oxygen \rightarrow unconstrained A-dependence Aleksas Mazeliauskas, aleksas.eu

Jet R_{AA} @ 6.8TeV in 2024

• NLO jets with MadGraph@NLO + Pythia8

Gebhard, AM, Takacs, in preparation

EPPS16 vs 21

EPPS21 vs TUJU21 at 6.8 TeV and 200 GeV

~ 10 % uncertainty in the baseline with non-trivial behaviour

$\begin{array}{c} \text{Semi-inclusive} \\ \text{nuclear modification factor} \\ I_{AA} \end{array}$

Coincidence measurement

- Trigger particle (e.g. jet with $p_{T}^{j} > p_{T,\min}$)
- Probe correlated with the trigger (e.g. hadrons opposite to the jet)

$$\sigma^{j}|_{p_{T}^{j} > p_{T,\min}} \qquad \qquad \text{Jet}$$

$$\frac{d\sigma^{h+j}}{dp_{T}} \qquad \qquad \text{Hadrons}$$

$$\Delta\phi_{ch,x}$$

$$Y_{AA}(p_T) = \frac{1}{\sigma^j} \frac{d\sigma^{h+j}}{dp_T}$$
 (per-trigger yield) $I_{AA}(p_T) = \frac{Y_{AA}}{Y_{pp}}$

 $\frac{d\sigma^{h+j}}{dp_T}$

Self-normalising observable \rightarrow uncertainty cancellations

adapted from Nagle (2023)

....

Jet-triggered hadron I_{AA} @ 6.8 TeV

- NLO jets with MadGraph@NLO + Pythia8
- Jet-Trigger: $p_{T,\min}^j = 30 \text{ GeV}$
- Hadrons with transverse momentum p_T opposite to jet

observe ..

- Differences among different nPDFs
- $I_{AA} \neq 1$
- Increasing nPDF uncertainties!

Jet-triggered hadron I_{AA} @ 6.8 TeV

- NLO jets with MadGraph@NLO + Pythia8
- Jet-Trigger: $p_{T,\min}^j = 60 \text{ GeV}$
- Otherwise identical

observe ..

- nPDF uncertainties still growing!
- But overall smaller and increase at larger p_T

~2% percent uncertainty in low momentum region

Aleksas Mazeliauskas, aleksas.eu

 $p_T \, [\text{GeV}]$

OO $\sqrt{s}_{NN} = 6.8 \text{ TeV}$ anti- $k_T R = 0.4 |\eta_{jet}| < 2.8$

Gebhard, AM, Takacs, in preparation

Jet-triggered hadron I_{AA} @ 200 GeV

• NLO jets with MadGraph@NLO + Pythia8

Gebhard, AM, Takacs, in preparation

Uncertainty (non)-cancellation

Why do uncertainties stop canceling?

check correlation of

 $Y_{\rm AA}(p_T) = \frac{1}{\sigma^j} \frac{d\sigma^{h+j}}{dp_T}$

Aleksas Mazeliauskas, aleksas.eu

Uncertainty (non)-cancellation

 $\Delta\left(\frac{X}{Y}\right) = \frac{X}{Y}\sqrt{\left(\frac{\Delta X}{X}\right)^2 + \left(\frac{\Delta Y}{Y}\right)^2 - 2\rho(X,Y)\frac{\Delta X}{X}\frac{\Delta Y}{Y}}$

check correlation of $Y_{AA}(p_T) = \frac{1}{\sigma^j} \frac{d\sigma^{h+j}}{dp_T}$

Why do uncertainties stop canceling?

• Loss of correlation for $p_T \gtrsim p_{T,\min}$

Bjorken x dependence

Trigger and coincidence cross-sections probe different Bjorken x Aleksas Mazeliauskas, aleksas.eu

Scale and hadronization uncertainties

Additional few percent differences in low momentum region

Aleksas Mazeliauskas, aleksas.eu

Hadron-triggered jet IAA

trigger on hadrons ($p_T^h > p_{T,\min}^h$) and measure away-side jets

Note that we do not subtract different trigger yields, c.f., ALICE

Aleksas Mazeliauskas, aleksas.eu

Hadron-triggered jet I_{AA} @ 6.8TeV

- Hadron-Trigger: $p_{T,\min}^h = 12 \text{ GeV}$
- Jets with transverse momentum p_T opposite to trigger hadron

observe ..

- Differences among different nPDFs
- $I_{AA} \neq 1$
- Increasing nPDF uncertainties!

Hadron-triggered jet IAA @ 200 GeV

• Significant differences between nPDFs

Proton baseline

Strategies for constructing reference spectra

The ratio of spectra cancels large theoretical and experimental uncertainties.

$$R_{\text{AA, min bias}}^{h,j}(p_T) = \frac{1}{A^2} \underbrace{\frac{d\sigma_{\text{AA}}^{h,j}/dp_T(6.37 \text{ TeV})}{\underbrace{d\sigma_{pp}^{h,j}/dp_T(5.02 \text{ TeV})}_{\text{measured}} \times \underbrace{\frac{d\sigma_{pp}^{h,j}/dp_T(6.37 \text{ TeV})}{\underbrace{d\sigma_{pp}^{h,j}/dp_T(5.02 \text{ TeV})}_{\text{scaling factor}}}$$

- 1) Use perturbative QCD to calculate scaling factor theoretically.
- 2) Interpolate measured pp spectra at nearby energies.
- 3) Consider hadron and jet spectra ratios at different collision energies.

Brewer, Huss, AM, van der Schee, PRD (2022)

Ratios of hadron spectra @ 6.37 TeV/5.02 TeV in 2021

Brewer, Huss, AM, van der Schee, PRD (2022)

Different mitigation strategies possible if no pp reference available

Aleksas Mazeliauskas, aleksas.eu

Ratios of jet spectra @ 6.37 TeV/5.02 TeV in 2021

Brewer, Huss, AM, van der Schee, PRD (2022)

data interpolation

NNLO pQCD

OO(6.37TeV)/pp(5.02TeV)

Different mitigation strategies possible if no pp reference available

Conclusions

Conclusions

- OO collisions \rightarrow opportunity to understand energy loss in small systems
- Discovery of small effects needs precise no-quenching baseline
- Uncertainties in nPDFs is the dominant baseline uncertainty
- Semi-inclusive observables are not free of nPDF uncertainties but few percent uncertainty can be achieved for jet-triggered hadron I_{AA}

Outlook

- OO and pO collisions at LHC in 2025
- The same energy baseline would be helpful
- Longer pO run would help constrain nPDFs
- Other opportunities with light ions, e.g., neon

cern.ch/lightions

Light ion collision at the LHC

Organisers

Reyes Alemany Fernandez Giuliano Giacalone Qipeng Hu Govert Hugo Nijs Saverio Mariani Wilke van der Schee Huichao Song Jing Wang Urs Wiedemann You Zhou

cern.ch/lightions

Bjorken x dependence of cross-sections

Aleksas Mazeliauskas, aleksas.eu