Momentum Broadening in Strongly Coupled $\mathcal{N} = 4$ Yang-Mills Theory, revisited

Hard Probes 2024 Satellite Meeting – SoftJet24 **University of Tokyo September 28, 2024**

Bruno Scheihing-Hitschfeld in collaboration with Krishna Rajagopal and Urs Achim Wiedemann

UC SANTA BARBARA Kavli Institute for **Theoretical Physics**

Why $\mathcal{N} = 4$ SYM? what do we hope to learn?

- Quark-gluon plasma produced in heavy ion collisions is a strongly coupled fluid
 - The fundamental degrees of freedom of this fluid are quark and gluon fields.
- We don't have tools to systematically study the real time dynamics of strongly coupled quantum field theories such as QCD.

 \approx Exception: theories with a known holographic dual.

• Supersymmetric $\mathcal{N} = 4$ Yang-Mills is a theory that contains fermionic and gluon fields, where calculations at strong coupling $\lambda = g^2 N_c \rightarrow \infty$ (provided $N_c \rightarrow \infty$) are feasible.

 \implies We hope to learn about physical features of strongly coupled fluids!

Classic results of strongly coupled $\mathcal{N} = 4$ SYM that we will address today

• The heavy quark drag force:

$$F = \frac{\pi}{2} \sqrt{\lambda} T^2 v \gamma \equiv$$

momentum:

$$\kappa_T = \pi \sqrt{\lambda} T^3 \gamma^{1/2}$$
,

• The jet quenching parameter

$\eta_D p$, with $p = M \gamma v$.

• The heavy quark diffusion coefficient, both for longitudinal and transverse

$$\kappa_L = \pi \sqrt{\lambda} T^3 \gamma^{5/2} \,.$$

$$\frac{\Gamma(3/4)}{(5/4)}\sqrt{\lambda}T^3$$

Wilson loops and momentum broadening a heuristic derivation

• Roughly speaking, the amplitude for a hard particle to transition from a state with momentum \mathbf{p} to a state with momentum $\mathbf{p} + \mathbf{k}$

$$\langle \mathbf{p} + \mathbf{k} |_{\text{out}} | \mathbf{p} \rangle_{\text{in}} = \int d^3 x \, e^{-i\mathbf{x} \cdot \mathbf{k}} W_{[x_f, x_i]}$$

where W is a Wilson line.

This means that the momentum broadening probability is given by

$$P(\mathbf{k}) \propto \int d^3L e^{i\mathbf{k}\cdot\mathbf{L}} \langle W[C] \rangle_T(\mathbf{L}) ,$$

where W[C] is a long, rectangular Wilson loop characterized by a velocity v.

Wilson loops the configurations of interest

How to calculate Wilson loops in strongly coupled $\mathcal{N} = 4$ SYM

 The AdS/CFT correspondence provides Wilson loops at finite temperature:

$$\langle W[\mathscr{C}] \rangle = \exp\left\{-(\mathscr{S}_{\mathrm{NG}}[\Sigma(\mathscr{C})] - \mathscr{S}_0)\right\},\$$

where ${\mathcal S}$ is the action of a string (with boundary conditions set by ${\mathscr C}$)

$$\mathcal{S}_{\rm NG}[\Sigma] = \frac{\sqrt{\lambda}}{2\pi} \int d\sigma \, d\tau \sqrt{\det\left(g_{\mu\nu}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}\right)} \,,$$

in a higher dimensional spacetime with a black hole with temperature T

$$ds^{2} = \frac{1}{z^{2}} \left[f(z) d\tau^{2} + d\mathbf{x}^{2} + \frac{dz^{2}}{f(z)} + z^{2} d\Omega_{5}^{2} \right] , \qquad f(z) = 1 - (\pi T z)^{4} .$$

The AdS/CFT correspondence provides a way to calculate the expectation value of

What had been done so far The trailing string [Gubser hep-th/0605182; HKKKY hep-th/0605158]

The energy-momentum flow down the string gives the drag force.

Fluctuations on top of this configuration give the broadening coefficients [Gubser hep-th/0612143; Casalderrey-Solana & Teaney hep-ph/0605199, hep-th/0701123]

What had been done so far The LRW configuration [hep-ph/0605178, 1006.1367]

This configuration was used to calculate \hat{q} .

Note: the x_{\parallel} coordinate is omitted on the right (no separation).

There is no momentum flow down the string into the horizon.

Two string configurations different kinematic regimes

- These are two specific kinematic regimes in which:
 - the trailing string describes the most likely value of heavy quark energy loss in the $M \to \infty$ limit. Small fluctuations in the configuration describe momentum fluctuations of a heavy quark that loses energy as it propagates.
 - the LRW configuration describes momentum broadening of a hard particle that does not lose any energy.
- $P(\mathbf{k})$ should contain all of this information: both the most likely values and the conditional distributions.

The broadening probability distribution without further ado

We obtain

$$P(\mathbf{k}) \propto \exp\left[-\sqrt{\lambda}Tt \times \tilde{S}_{tot}\left(\frac{2\mathbf{k}}{\sqrt{\lambda}Tt}\right)\right]$$

On the left, we plot

$$\tilde{S}_{\text{tot}}(\mathbf{C})$$
, with $\mathbf{C} = \frac{2\mathbf{k}}{\sqrt{\lambda tT}}$.

Let us look at each value of v individually. We take $k_3 > 0$ to be the momentum lost.

v = 0

v = 1

• : most likely momentum change does not exist! (goes to infinity)

However, broadening is welldefined conditioned on zero momentum lost, i.e. $k_3 = 0$:

$$\hat{q} = \frac{\pi^{3/2} \Gamma(3/4)}{\Gamma(5/4)} \sqrt{\lambda} T^3$$

So, every one of the classic results is there. What else do we have access to?

Non-Gaussian features beyond the drag and diffusion picture for heavy quarks

- to all of the fully connected moments of higher order. We will discuss:
 - ^o Skewness along k_3

 - The 4th order moments (Kurtosis and broadening correlation)
- We find that for all of the moments the following large γ behavior holds:

$$\langle k_{\perp}^{2m} k_3^n \rangle_c \propto \sqrt{\lambda} t (\sqrt{\gamma} T)^{n+2m+1} \times \gamma^{n-1}.$$

• We have the full $P(\mathbf{k})$ at large λ , so we can calculate the leading contribution

Correlation between transverse momentum broadening and energy loss

Skewness and drag-broadening correlations the third order moments for HQ transport

the figures):

$$\langle (k_3 - \langle k_3 \rangle)^3 \rangle = \frac{9\nu}{2} \pi \sqrt{\lambda} t \gamma^4 T^4$$

$$\langle k_{\perp}^2(k_3 - \langle k_3 \rangle) \rangle = 3 v \pi \sqrt{\lambda} t \gamma^2 T^4$$

Note that they can be significant even at modest speeds.

We find that the distribution has a non-zero skewness (which was manifest in

and a non-zero correlation between energy loss and momentum broadening:

Kurtosis and longitudinal-transverse broadening correlation the fourth order moments for HQ transport

We find the kurtosis along the transverse direction

$$\langle k_1^4 \rangle - 3 \langle k_1^2 \rangle^2 = \langle k_2^4 \rangle - 3 \langle k_2^2 \rangle^2 = \frac{9(8 - v^2)}{8} \pi \sqrt{\lambda} t \gamma^{3/2} T^5$$
,

the kurtosis along the longitudinal direction

$$\langle (k_3 - \langle k_3 \rangle)^4 \rangle - 3 \langle (k_3 - \langle k_3 \rangle)^2 \rangle^2 = \frac{9(8 + 19v^2)}{8} \pi \sqrt{\lambda} t \gamma^{11/2} T^5 ,$$

and the cross-correlation

$$\langle k_{\perp}^2 (k_3 - \langle k_3 \rangle)^2 \rangle = \frac{3(8 + 9v^2)}{4} \pi \sqrt{\lambda} t \gamma^{7/2} T^5$$

What do we learn in the v = 1 case? **connections to BDMPS-Z**

- If we calculate the conditional probability for k_1 when $k_3 = 0$, we get the momentum broadening distribution of interest in the **BDMPS-Z** formalism.
- The distribution is wellapproximated by a Gaussian if the coupling constant $\lambda = g^2 N_c$ is large.

What do we learn in the v = 1 case? connections to BDMPS-Z

- However, if we plot $P(k_3)$, the result is not a normalizable probability distribution.
- Note that the relation between the Wilson loop and the probability distribution for momentum change relies on k being a scale that is small compared with the hard scale of the problem (*E* or *M*).

What do we learn in the v = 1 case? connections to BDMPS-Z

- However, if we plot $P(k_3)$, the result is not a normalizable probability distribution.
- Note that the relation between the Wilson loop and the probability distribution for momentum change relies on k being a scale that is small compared with the hard scale of the problem (*E* or *M*).

If one wants to interpret this as a longitudinal broadening calculation, one cannot go to arbitrarily high momentum

Transverse momentum distribution at fixed energy loss obtaining $\langle k_{\perp}^2 \rangle$ from conditional probabilities It is still interesting to explore the features of this distribution:

• One may condition the above distribution at a fixed nonzero value of k_3 and obtain

$$\frac{\langle k_{\perp}^{2} \rangle_{k_{3}}}{t} = \frac{\hat{q}}{2} \left(1 + \left(\frac{2k_{3}}{\pi \sqrt{\lambda} t T^{2}} \right)^{2} \right)^{1/4},$$

$$\frac{d < k_{\perp}^2 >_{dk_3/dt}}{dt} = \frac{\hat{q}}{2} \left(1 + \left(\frac{2}{\pi \sqrt{\lambda} T^2} \frac{dk_3}{dt} \right)^2 \right)^{1/4}$$

or, more suggestively of a correlation between the rate of energy loss and broadening,

Summary

- We have revisited and extended the characterization of momentum broadening in $\mathcal{N}=4$ SYM.
 - ^o We have presented η_D , κ_T , κ_L and \hat{q} in a unified fashion.
 - We have calculated the non-Gaussian corrections to heavy quark transport, e.g., how energy loss is correlated with transverse momentum broadening.
- Prospects:
 - Non-Gaussian fluctuations in heavy quark transport
 - Jet momentum broadening