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Why ./ = 4 SYM?
what do we hope to learn?

* Quark-gluon plasma produced in heavy ion collisions is a strongly coupled
fluid

o The fundamental degrees of freedom of this fluid are quark and gluon fields.

 We don’t have tools to systematically study the real time dynamics of strongly
coupled quantum field theories such as QCD.

w Exception: theories with a known holographic dual.

» Supersymmetric 4/ = 4 Yang-Mills is a theory that contains fermionic and
gluon fields, where calculations at strong coupling 4 = gzNC — 00 (provided

N, — o0) are feasible.

—> We hope to learn about physical features of strongly coupled fluids!



Classic results of strongly coupled ./ = 4 SYM

that we will address today

 The heavy quark drag force:

T
I = EﬂTzvy =1npp, Withp=Myv.

 The heavy quark diffusion coefficient, both for longitudinal and transverse
momentum:

Ky = JZ'\/ZTB}/l/z , Ky = n\/ET%/S/Z .

* [he jet quenching parameter



Wilson loops and momentum broadening

a heuristic derivation

 Roughly speaking, the amplitude for a hard particle to transition from a state
with momentum p to a state with momentum p + k

<p + Kk |out | p>in — JdBX i W[xfaxi]

where W is a Wilson line.

* This means that the momentum broadening probabillity is given by
P(K) JcﬁL e L (W[C]) L),

where W[ (] is a long, rectangular Wilson loop characterized by a velocity v.



Wilson loops

the configurations of interest
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How to calculate Wilson loops
in strongly coupled ./ = 4 SYM

 The AdS/CFT correspondence provides a way to calculate the expectation value of
Wilson loops at finite temperature:

(WIB]) = exp { —(Sng[Z(@)] = Sp) |

where & is the action of a string (with boundary conditions set by %)

Vi —
CS)NG[Z] —_ z_ﬂjdadf d@t (gﬂyaaxﬂaﬁXU) o

in a higher dimensional spacetime with a black hole with temperature 1

dz?

ds* = le [f(z) dr* + dx* + +z7°dQz | () =1—- (aT7)*.

f(z)



What had been done so far
The trailing string [Gubser hep-th/0605182; HKKKY hep-th/0605158]

The energy-momentum
flow down the string gives
the drag force.

Fluctuations on top of this
configuration give the
broadening coefficients
[Gubser hep-th/0612143;
Casalderrey-Solana &
Teaney hep-ph/0605199,
hep-th/0701123]




What had been done so far
The LRW configuration [hep-ph/0605178, 1006.1367] !

XL
This configuration was
used to calculate g.

Note: the X) coordinate Is

omitted on the right (no
separation).

There Is no momentum
flow down the string into
the horizon.

< Nno energy loss.
V’u — (I,VH — 1,VJ_ — O)



Two string configurations

different kinematic regimes

* These are two specific kinematic regimes in which:

O the trailing string describes the most likely value of heavy quark energy loss

in the M — oo limit. Small fluctuations in the configuration describe
momentum fluctuations of a heavy quark that loses energy as it
propagates.

o the LRW configuration describes momentum broadening of a hard particle
that does not lose any energy.

» P(K) should contain all of this information: both the most likely values and the
conditional distributions.



The broadening probability distribution

without further ado
Voo _09 We obtain

3.000 ~ 2k

P(k) < exp |—\/ATtx S, .

ATt
On the left, we plot
0.100 ~/ . 2k
S.(C), withC = .
AT
Let us look at each value of v individually. We
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y =0

@ : most likely
momentum change 1
0.100 |
—> most likely value of 0.010
energy loss 0.001

1074

(k1) = (ky) = (k3) =0 10 |
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A Ky = /AT .
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vy = 0.9

© : most likely
momentum change

—> most likely value of
energy loss

<k1> — <k2> =0




vy = (.99

© : most likely
momentum change

—> most likely value of
energy loss

<k1> — <k2> =0




vy =1

© : most likely
momentum change 1

0.100

does not exist! S oro
(goes to infinity) 0.001

1074

However, broadening is well- o
defined conditioned on zero 1|

momentum lost, i.e. k; = 0:




S0, every one of the classic
results Is there.
What else do we have access to?




Non-Gaussian features

beyond the drag and diffusion picture for heavy quarks

« We have the full P(K) at large 4, so we can calculate the leading contribution
to all of the fully connected moments of higher order. We will discuss:

O Skewness along k;

o (Correlation between transverse momentum broadening and energy loss

o The 4th order moments (Kurtosis and broadening correlation)

» We find that for all of the moments the following large y behavior holds:

(k3™ ), o A Aty fy T2+l syt




Skewness and drag-broadening correlations

the third order moments for HQ transport

 We find that the distribution has a non-zero skewness (which was manifest in
the figures):

Ov
((ky = (ks))) = —-m/any' T,
 and a non-zero correlation between energy loss and momentum broadening:

(k2(ky — (k3))) = 3van/Aty*T* .

* Note that they can be significant even at modest speeds.



Kurtosis and longitudinal-transverse broadening correlation

the fourth order moments for HQ transport

* We find the kurtosis along the transverse direction

2
() =307 = (i - 3082 = 2820 1 s

* the kurtosis along the longitudinal direction

2
(tky = (k)Y = 340k = (k) = 22Ty 127

e and the cross-correlation

2
(ki(ky — (k3))*) = @nﬂwmﬁ .



What do we learn in the v = 1 case?
connections to BDMPS-Z
o [ In P(k,) ]

AT

e |[f we calculate the conditional
probability for k; when k; = 0, we

R

get the momentum broadening 0.100
distribution of interest in the 2 orol
BDMPS-Z formalism.
0.001
* The distribution is well- .
approximated by a Gaussian if o
the coupling constant 4 = gzNC 107
islarge. A S
-6 ~4 -2 0 2 4 6
2k;




What do we learn in the v = 1 case?
connections to BDMPS-Z
o [ In P(k;) ]

AT

 However, if we plot P(k;), the

result Is not a normalizable
probability distribution.

e Note that the relation between the
Wilson loop and the probabillity
distribution for momentum

change relies on K being a scale
that is small compared with the
hard scale of the problem

(Eor M) 10

n\/Z 112



What do we learn in the v = 1 case?
connections to BDMPS-Z [
eXp

In P(k;) ]

AT
 However, if we plot P(k;), the

result is not a normalizable i
probabillity distribution. 0400
» Note that the relation between the o1
Wilson loop and the probabillity 0.001
distribution for momentum |
: : 10 7 -

change relies on K being a scale f
that is small compared with the 107

hard scale of the problem R

-10 -5 0
(E o M) If one wants to interpret this as a 2k,

longitudinal broadening calculation, one )
cannot go to arbitrarily high momentum ”\/ZIT



Transverse momentum distribution at fixed energy loss
obtaining (k7) from conditional probabilities

It Is still interesting to explore the features of this distribution;

» One may condition the above distribution at a fixed nonzero value of k; and obtain

1/4

2
ﬂ — Q ] + 2—k3
! 2 ﬂ\/Zth |

or, more suggestively of a correlation between the rate of energy loss and broadening,
1/4

2
d < ki Zdkyfdt q (4 2 d_k3
dt B JT\/ETZ dt




Summary

e \We have revisited and extended the characterization of momentum
broadening in // = 4 SYM.

© We have presented 1, K7, kK; and ¢ in a unified fashion.

o We have calculated the non-Gaussian corrections to heavy quark transport,
e.g., how energy loss is correlated with transverse momentum broadening.

 Prospects:
o Non-Gaussian fluctuations in heavy quark transport

o Jet momentum broadening



