Minijet quenching in non-equilibrium quark-gluon plasma

Fabian Zhou

Institut für Theoretische Physik Universität Heidelberg

SoftJet2024

with J. Brewer, A. Mazeliauskas, JHEP 2402.09298

Motivation

no vacuum radiation

Goal: describe parton energy loss in an expanding plasma

Outline

Leading order kinetic theory

Minijets as linear perturbations

Non-boost invariant EKT

Summary

Main stages of a heavy ion collision

study minijets in the pre-equilibrium phase

Framework

- Effective Kinetic Theory for high temperature gauge theories Arnold, Moore, Yaffe (2003), JHEP 0209353
- weakly coupled quasi-particle picture, $\lambda = 4\pi \alpha_s N_c$

ightarrow phase space distribution $f(au, \mathbf{x}, \mathbf{p})$

$$(\partial_{\tau} + \mathbf{v} \cdot \nabla_{\mathbf{x}}) f(\tau, \mathbf{x}, \mathbf{p}) = -C[f]$$

Out-of-equilibrium initial state is transported to equilibrium

Expanding QGP

- Iongitudinal expansion
- approximate boost invariance
- homogeneity in the transverse plane

$$\left(\partial_{\tau} - \frac{p_z}{\tau} \partial_{p_z}\right) f(\tau, \mathbf{p}) = -C[f]$$

KøMPøST, PRC 1805.00961

leading order elastic and inelastic scattering processes

$$C[f](\mathbf{p}) = C_{2\leftrightarrow 2}[f](\mathbf{p}) + C_{1\leftrightarrow 2}[f](\mathbf{p})$$

Collision kernel

 $C_{2\leftrightarrow 2}$

► small momentum transfer $q = |\mathbf{p}' - \mathbf{p}| \ll 1$ regulated by $\frac{1}{q^2} \rightarrow \frac{1}{q^2 + m_{\text{eff}}^2}$

- medium induced radiation of gluons
- ▶ $g \rightarrow q\bar{q}$ splittings
- LO: strictly collinear

1. Initial conditions: thermal, non-expanding

$$\delta f_{\rm Jet}(\tau_0, \mathbf{p}) \to \delta f_{\rm eq}(p)$$

1. Initial conditions: thermal, non-expanding

• initial jet distribution $\delta f_{\text{Jet}}(\tau_0, \mathbf{p}) \propto \delta(\mathbf{p} - \mathbf{p}_0)$

Initial condition for the jet on top of a thermal background

Inverse energy cascade

1) build up of soft bath 2) transport of energy for isotropic case see Kurkela and Lu, PRL 1405.6318

• How is $\delta f_{eq}(p)$ approached?

Equilibrium distribution $\delta f_{eq}(p)$

Study time evolution of $\delta f_{\text{Jet}}(\tau, \mathbf{p})$ and its angular (θ) structure

Jet distributions

equilibrated perturbation

$$\delta f_{\rm eq}\left(\frac{p}{T}\right) = \underbrace{\partial_T f_{\rm eq}\left(\frac{p}{T}\right)}_{\rm eq. \ distr.} \times \underbrace{\delta T}_{\rm magnitude}$$

• evolve
$$\delta f_{
m Jet}(au,{f p})$$
 for $heta$ -slices

Jet distributions

equilibrated perturbation

$$\delta f_{\rm eq}\left(\frac{p}{T}\right) = \underbrace{\partial_T f_{\rm eq}\left(\frac{p}{T}\right)}_{\rm eq. \ distr.} \times \underbrace{\delta T}_{\rm magnitude}$$

• Normalise
$$\int dp p^2 \delta f(p, \theta) = 1$$
 for each θ

Fermions

► initialise: $\delta f_g(\tau_0, \mathbf{p}) \propto \delta(\mathbf{p} - \mathbf{p}_0)$, $\delta f_q(\tau_0, \mathbf{p}) = 0$

Quark distribution in jet direction

 \blacktriangleright early times: depletion of quarks around $p \sim T$

 \rightarrow hard gluon scatters off of the soft background

2. Initial conditions: anisotropic, expanding

$$\left(\partial_{\tau} - \frac{p_z}{\tau} \partial_{p_z}\right) \delta f(\tau, \mathbf{p}) = -\delta C[\delta f, \bar{f}]$$

non-thermal medium

$$\bar{f}(\tau_0, \mathbf{p}) \propto \exp\left(-\frac{2}{3} \frac{p_\perp^2 + \xi^2 p_z^2}{Q^2}\right)$$

evolving according to

$$\left(\partial_{\tau} - \frac{p_z}{\tau} \partial_{p_z}\right) \bar{f}(\tau, \mathbf{p}) = -C[\bar{f}]$$

Kurkela and Zhu, PRL 1506.06647 Kurkela and Mazeliauskas, PRD 1811.03068, PRL 1811.03040

 $ar{f}(au,\mathbf{p})$: approach to hydrodynamics!

Pressure equilibration minijet

$$\bullet \ \delta P_L = \delta T^{zz} = \int_{\mathbf{p}} \frac{p^z p^z}{p} f(\tau, \mathbf{p})$$

Curves collapse by rescaling time with $\eta/s\sqrt{E}$

Hydrodynamisation of jets

$$\delta f_{\rm Jet}(\tau_0, \mathbf{p}) \to \delta f_{\rm hydro}(\tau, \mathbf{p})$$

thermal, non-expanding background:

 $\delta f_{\rm eq}(p)
ightarrow$ known analytic expression

- non-equilibrium, expanding background:
 no analytic expression for δf_{hvdro}
- hydrodynamisation: loss of memory about initial conditions

Hydrodynamisation

- jets with different initial $\cos \theta$
- background like perturbation (azimuthally symmetric)

Indistinguishability around $\tilde{w}_{mjh} \approx 2.7 \mid \rightarrow$ Hydrodynamisation

Hydrodynamisation time

timescale of minijet quenching

$$\tau_{\rm mjh} = 5.1 \, {\rm fm} \left(\frac{4\pi \eta/s}{2} \right)^{3/2} \left(\frac{E}{31 \, {\rm GeV}} \right)^{1/2}$$

Caveats:

- only Bjorken expansion
- no running coupling

Non-boost invariant EKT

▶ relax boost invariance → spatial z-coordinate

$$(\partial_t + v_z \partial_z) f(t, z, \mathbf{p}) = -C[f]$$

Eskola et al., 2406.17592

Goal: pre-equilibrium simulations without boost invariance

First step: Gaussian perturbations in z

Bhambure, Mazeliauskas, Paquet, Singh, Teaney, FZ, in preparation

Kinetic Theory comparison to density frame hydrodynamics Teaney et al., 2403.04185

▶ small η/s reproduces hydro \leftrightarrow large η/s approaches free streaming

Summary & Outlook

Minijets as perturbations on top of a background

static QGP:

• thermal distribution with $T(\theta)$

expanding QGP:

minijets hydrodynamise (later than the background)

Outlook:

- longitudinal dynamics $z \rightarrow \eta$
- extract jet response functions \rightarrow phenomenology

Comparison with background-like perturbation

• azimuthal symmetric (ϕ): $\delta f_{sym}^{az}(\tau_0, \mathbf{p}) = \epsilon \bar{f}(\tau_0, \mathbf{p})$

$$\bar{f} + \delta f_{\rm sym}^{\rm az} = (1+\epsilon)\bar{f}$$

Hydrodynamization occurs, if both perturbations are indistinguishable

Hydrodynamisation

• anisotropy
$$\mathcal{A} = \frac{\delta P_T - \delta P_L}{\delta e/3}$$

 $\delta f_g(p)$ vs. $\delta f_{
m sym}^{
m az}$

loss of memory about the initial conditions

ightarrow Hydrodynamisation

Pressure equilibration background

- energy momentum tensor $T^{\mu\nu} = \int_{\mathbf{p}} \frac{p^{\mu}p^{\nu}}{p} f(\tau, \mathbf{p})$
- $T_{\rm eq}^{\mu\nu} = {\rm diag}(e,P,P,P)$ with P = e/3
- Background longitudinal pressure $\overline{P}_L = \overline{T}^{zz}$

Chemical equilibration

compare with kinetic equilibrium (isotropy of pressure)

in chemical equilibrium more fermionic degrees of freedom

chem. equilibration not affected by expansion

Backup

Equations of motion from 2PI effective action

$$\begin{split} & \left[iG_{0,ac}^{-1,\mu\gamma}(x;\mathcal{A}) + \Pi_{ac}^{(0),\mu\gamma}(x) \right] \rho_{\gamma\nu}^{cb}(x,y) \\ &= -\int_{y^0}^{x^0} dz \Pi_{ac}^{(\rho),\mu\gamma}(x,z) \rho_{\gamma\nu}^{cb}(z,y) \\ & \left[iG_{0,ac}^{-1,\mu\gamma}(x;\mathcal{A}) + \Pi_{ac}^{(0),\mu\gamma}(x) \right] F_{\gamma\nu}^{cb}(x,y) \\ &= -\int_{t_0}^{x^0} dz \Pi_{ac}^{(\rho),\mu\gamma}(x,z) F_{\gamma\nu}^{cb}(z,y) + \int_{t_0}^{y^0} dz \Pi_{ac}^{(F),\mu\gamma}(x,z) \rho_{\gamma\nu}^{cb}(z,y) \end{split}$$
(1)

Backup

- ▶ local homogeneity → relative coordinate $s^{\mu} = x^{\mu} y^{\mu}$ and center coordinate $X^{\mu} = \frac{1}{2}(x^{\mu} + y^{\mu})$
- gradient expansion in X^{μ}
- to lowest order, spectral function ρ is on shell \rightarrow quasi-particle picture
- non-equilibrium distribution function f(X,p):

$$F(X,p) = -i\left[\frac{1}{2} \pm f(X,p)\right]\rho(X,p)$$

$$\Rightarrow p^{\mu}\partial_{\mu}f(X,p) = -C[f]$$

 $2\leftrightarrow 2$

Hard (left) and soft (right) medium regulated scattering

$$C_{2\leftrightarrow2}[f](\mathbf{p}) = \frac{1}{4p\nu} \int_{\mathbf{k},\mathbf{p}',\mathbf{k}'} (2\pi)^4 \delta^{(4)} \left(p^{\mu} + k^{\mu} - p'^{\mu} - k'^{\mu} \right) \\ \times |\mathcal{M}|^2 \left\{ \underbrace{f_{\mathbf{p}} f_{\mathbf{k}} \left(1 \pm f_{\mathbf{p}'} \right) (1 \pm f_{\mathbf{k}'})}_{\text{loss}} - \underbrace{f_{\mathbf{p}'} f_{\mathbf{k}'} \left(1 \pm f_{\mathbf{p}} \right) (1 \pm f_{\mathbf{k}})}_{\text{gain}} \right\}$$
(3)

Hard (left) and soft (right) medium regulated scattering

$$|\mathcal{M}|^{2} = 2\lambda^{2}\nu \left(9 + \frac{(s-t)^{2}}{u^{2}} + \frac{(u-s)^{2}}{t^{2}} + \frac{(t-u)^{2}}{s^{2}}\right)$$

▶ small momentum transfer $q = |\mathbf{p}' - \mathbf{p}| \ll 1$ regulated by $\frac{1}{q^2} \rightarrow \frac{1}{q^2 + m_{\text{eff}}^2}$ $m_{\text{eff}}^2 = 2g^2 \int \frac{d^3\mathbf{p}}{(2\pi)^3p} \left[N_c f_{\mathbf{p}}^g + N_f f_{\mathbf{p}}^g\right]$

effective $1\leftrightarrow 2\ \text{process}$

$$C_{1\leftrightarrow2}[f](\mathbf{p}) = \frac{1}{2} \frac{1}{\nu} (2\pi)^{3} \int_{\tilde{\mathbf{p}}, \mathbf{p}', \mathbf{k}'} (2\pi)^{4} \delta^{(4)} \left(\tilde{p}^{\mu} - p'^{\mu} - k'^{\mu} \right)$$
$$\times \left[\delta^{(3)}(\mathbf{p} - \tilde{\mathbf{p}}) - \delta^{(3)} \left(\mathbf{p} - \mathbf{p}' \right) - \delta^{(3)} \left(\mathbf{p} - \mathbf{k}' \right) \right]$$
$$\times \gamma \left\{ \underbrace{f_{\mathbf{p}} \left(1 \pm f_{\tilde{\mathbf{p}}'} \right) (1 \pm f_{\mathbf{k}'})}_{\text{loss}} - \underbrace{f_{\mathbf{p}'} f_{\mathbf{k}'} \left(1 \pm f_{\tilde{\mathbf{p}}} \right)}_{\text{gain}} \right\}$$
(4)

31/22

$\mathbf{1}\leftrightarrow\mathbf{2}$

 $effective \ 1 \leftrightarrow 2 \ process$

- LO \rightarrow strictly collinear
- medium induced radiation of gluons
- $\blacktriangleright \ N+1 \leftrightarrow N+2 \text{ effectively } 1 \leftrightarrow 2$

Parton going through the medium, Figure from [1]

- hard parton receiving multiple kicks
- formation time $\tau_f \sim E$
- BH: $l_f \ll l_{\rm mfp}$, independent emissions

▶ LPM: $l_f \sim l_{\rm mfp}$, destructive interference → suppression

Bottom-up thermalization

Baier, Müller, Schiff, Son (2001)

Isotropization of the distribution, Figure from [2]

- 1: overoccupied system getting more anisotropic
- 2: population of soft gluons
- 3: inverse energy cascade

Radiation vs. elastic scattering

- ▶ particle number $n = \int_{\mathbf{p}} f(\tau, \mathbf{p}) \rightarrow C_{1\leftrightarrow 2}[f]$
- ▶ transverse pressure $P_T = \frac{1}{2} \int_{\mathbf{p}} p_{\perp}^2 / pf(\tau, \mathbf{p}) \rightarrow C_{2\leftrightarrow 2}[f]$

Equilibrium distribution

• equilibrated jet \rightarrow change in temperature δT and velocity δu^z

$$\delta f_{\rm eq}(\mathbf{p}) = \left(\delta T \partial_T + \delta u^z \partial_{u^z}\right) n_{\rm BE} \left(p_\mu u^\mu / T\right) \bigg|_{u^z = 0}$$
$$\delta f_{\rm eq}(p, \theta) = \left(\delta u^z \cos \theta + \frac{\delta T}{T}\right) F(p/T)$$

1

both contributions can be disentangled

Equilibrium distribution

back-to-back jet conserves net momentum:

$$\delta f_{\rm eq}(p,\theta) = \left(\underline{\delta u^z \cos \theta} + \frac{\delta T}{T} \right) F(p/T)$$

Initial condition: back-to-back jet

Only $1 \leftrightarrow 2$

Similar timescales of equilibration ⇒ 2↔2 contribute more to equilibration of the anti-jet

Moments of δf

angular effective temperature

$$I_n(\theta) \equiv 4\pi \int \frac{p^2 dp}{(2\pi)^3} p^n f(p,\theta) = \mathcal{N}_n \times T(\theta)^{n+3}$$
(5)

$$T(\theta) = \overline{T} + \delta T(\theta)$$

temperature perturbation

$$\frac{\delta T(\theta)}{\overline{T}} = \frac{\delta I_n(\theta)}{(n+3)\overline{I}_n(\theta)}$$

look at time evolution!

Moments of δf

Moments of the back-to-back jet

different moments agree before different angles do!

Equilibrium distribution

back-to-back jet conserves net momentum:

$$\delta f_{\rm eq}(p,\theta) = \left(\underbrace{\delta u^z \cos \theta}_{} + \frac{\delta T}{T} \right) F(p/T)$$

Initial condition: back-to-back jet

Anti-jet

 \blacktriangleright introduce anti-jet \rightarrow no energy deposited, **only** net momentum

• allows us to study the build up of δu^z

Moments of $\delta f_{\rm anti}$

• θ -dependence \rightarrow faster reached by elastic processes

single jet: velocity builds up faster than temperature

Pressure equilibration

• scaled time
$$\tilde{\omega} = \tau / \tau_R$$
 with $\tau_R = \frac{4\pi \eta / s}{T(\tau)}$

• effective temperature from $e(\tau) = \nu_{\text{eff}} \frac{\pi^2}{30} T(\tau)^4$

