Yeonju Go **Brookhaven National Laboratory**

> SoftJet 2024 Tokyo, Japan Sep. 28-29 2024

arXiv:2408.08599

Search for the diffusion wake via measurements of jet-track correlations with the ATLAS collaboration

Medium response induced by jets

- Typical structure of *medium response*;
 - enhancement in the jet direction, called e.g. wake
 - depletion in the opposite jet direction, called e.g. diffusion wake

• When a high-p_T parton loses energy in medium, the energy may be transferred to the medium

SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29

Diffusion wake using y-jets

• **Diffusion wake** (depletion) in boson-jet events; unlike di-jet events, a jet associated with a boson e.g. photon is NOT contaminated by

in-medium parton shower modification or wake caused by the other jet in the opposite direction

Previous measurements of Z-hadron correlations

measurement is explained by MPI effect by CoLBT

Yeonju Go (BNL)

Previous measurements of Z-hadron correlations

• Particle enhancement at $\Delta \phi(\text{trk}, Z) \sim 0$ in the previous CMS Z-hadron correlation

from MPI

pp

PRL 130, 052301 (2023), CoLBT

Yeonju Go (BNL)

• Jet-hadron angular correlations **not only in** ϕ **but also in** η to distinguish the **diffusion wake**

Pb+Pb 0-10 %

Diffusion wake: dependence on jet energy loss

PRL 130, 052301 (2023), CoLBT

- Smaller $x_{J_{\gamma}} = p_T^{Jet}/p_T^{\gamma}$ indicates larger jet energy loss and longer path through the medium and hence larger medium response i.e., diffusion wake
- does

Yeonju Go (BNL)

• However, the MPI signal has no significant dependence on the $x_{J_{\gamma}}$, while the diffusion wake

Analysis selections

- Centrality 0-10%
- Photons
 - → 90-180 GeV and $|\eta| < 2.37$
 - only leading prompt Isolated photons (direct+fragmentation photons)
- Jets
 - \Rightarrow $p_{\rm T}$ > 40 GeV and $|\eta|$ < 2.5
 - ⇒ only leading jets in $\Delta \phi(\gamma, jet) > 3\pi/4$ → back-to-back photon-jet in phi
- Tracks
 - \Rightarrow 0.5-2 GeV and $|\eta| < 2.5 \rightarrow$ low-p_T tracks; sensitive to the medium response
 - $\Rightarrow \Delta \phi$ (jet, track) > $\pi/2 \rightarrow$ in the opposite hemisphere from jet

• Three $x_{J_{\gamma}}$ regions: $0.3 < x_{J_{\gamma}} < 0.6$, $0.6 < x_{J_{\gamma}}$

larger jet energy loss

< 0.8 and 0.8 <
$$x_{J\gamma}$$
 < 1.0
to the second secon

SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29

 $|\Delta\eta(jet, track)|$ in pp collisions

Yeonju Go (BNL)

arXiv:2408.08599

 The yield distributions as a function of $|\Delta\eta(\text{jet, track})|$ in the **three** $x_{J_{\gamma}}$ **regions are** consistent with each other within uncertainties → in agreement with the theory expectation

 $|\Delta\eta(jet, track)|$ in Pb+Pb collisions

Yeonju Go (BNL)

- Tracks produced from the bulk medium constitute a background
 - estimated using an event mixing technique
 - \rightarrow this "uncorrelated tracks" (Y_{uncorr}) is used as a reference for the track-jet correlation in photonjet events.

Event mixing technique

- ➡ A photon-jet pair in a given event is matched with tracks in a different minimum-bias (MB) Pb+Pb event
- → When mixing the two events, an MB Pb+Pb event is chosen to have similar properties as the signal event
 - i.e. ΣE_{T}^{FCal} , event plane angle, vertex z position

Event Mixing Matching Condition

 ΣE_{T}^{FCal} in events with the photon–jet production ("signal" event)

= ΣE_{T}^{FCal} from the photon–jet production

When mixing signal and MB events, ΣE_{T}^{FCal} in MB event = ΣE_{T}^{FCal} in a given by the second secon

correlated

+ ΣE_{T}^{FCal} from bulk medium without the photon–jet production

uncorrelated

 ΣE_{T}^{FCal} from the photon–jet production is estimated in pp data (cross-checked with MC), and has a mean value $\Sigma E_{T}^{FCal,pp} = 17 \text{ GeV}$

$$\Sigma^{
m al}$$
 in a given signal event - $\Sigma E_{
m T}^{
m FCal,pp}$

• ±50% variation on $\Sigma E_{\mathrm{T}}^{\mathrm{FCal},pp}$ is considered as systematic uncertainties \rightarrow this approximately 1 σ of the $\Sigma E_{\mathrm{T}}^{\mathrm{FCal},pp}$ distributions

- Small diffusion wake signal shown in the lowest $x_{I\nu}$ region

Diffusion wake signal

• There is a clear but small diffusion wake dip at the lowest $x_{J\gamma}$

Yeonju Go (BNL)

Double ratio

arXiv:2408.08599

- The results are consistent with unity within uncertainties
 - \rightarrow no significant $x_{J\gamma}$ -dependence of the diffusion wake is found

Diffusion wake amplitude

- To quantify the diffusion wake, Gaussian fits are performed \rightarrow diffusion wake would have a *negative amplitude* ($a_{dw} < 0$)
- For probability distributions, Monte Carlo sampling method is used
 - statistical and systematic uncertainties and their correlations are considered
 - \rightarrow the fit is repeated with the σ_{dw} fixed, representing a different hypothesis each time, while a_{dw} and a_0 are treated as free parameters

Yeonju Go (BNL)

Diffusion Wake Amplitude Diffusion Wake Width $a_0 + a_{dw} \cdot e^{-|\Delta \eta(\text{jet,track})|^2/(2\sigma_{dw}^2)}$

Probability distributions

- Diffusion wake amplitude of best fit for the lowest $x_{J_{\gamma}}$ is 0.5-0.8% for the diffusion wake width range of 0.5-1.0
- highly correlated bin-by-bin

Yeonju Go (BNL)

arXiv:2408.08599

Statistical uncertainty dominates in the probability distributions as systematic uncertainties are

- A diffusion wake double amplitude $b_{\rm dwr}$ value smaller than -0.0058 can be ruled out at 95% confidence level

Stat. uncert. dominates in probability distribution; more statistics will be valuable

Yeonju Go (BNL)

SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29

17

Discussion: how many particles are we missing?

Yeonju Go (BNL)

 $d^2 N^{\text{jet-track}}$ $\frac{1}{N^{\gamma-jet}} \frac{d\Delta \eta}{d\Delta \eta} \sim 90 \text{ at } |\Delta \eta(\text{jet, track})| = 0$

• $Y_{\rm corr}/Y_{\rm uncorr}$ is about 0.5-0.8%

0.45-0.75 particles (less than 1 particle in unit η, ϕ) are reduced by diffusion wake!

Comparison between ATLAS vs CMS

Both results shows diffusion wake dip, qualitatively consistent with each other

Yeonju Go (BNL)

Comparison between ATLAS vs CMS - (1)

CMS

- Z+hadron correlations
 Pros
 - ➡ Z: clean probe
 - centrality control
 - no jet reconstruction → potentially reach highly quenched jets which usually can't be experimentally reconstructed

• Cons

no jet reconstruction → no control of jet energy loss, and smearing of angular correlation (especially in eta)

Comparison between ATLAS vs CMS - (1)

CMS

- Z+hadron correlations
 Pros
 - ➡ Z: clean probe
 - centrality control
 - no jet reconstruction → potentially reach highly quenched jets which usually can't be experimentally reconstructed

• Cons

no jet reconstruction → no control of jet energy loss, and smearing of angular correlation (especially in eta)

ATLAS Jet+hadron

- Correlations in γ+jet events
 Pros
 - → jet reconstruction
 - direct angular correlation between jet and hadrons
 - ⇒ jet-p_T/energy loss control → differential $x_{J\gamma}$ measurement

• Cons

⇒ background photons (decay from e.g. π⁰) → potentially measure smaller diffusion wake from dijet contamination
 ⇒ can't access extremely quenched jets below x_{Jγ}<0.3

21

Comparison between ATLAS vs CMS - (2)

- Z+hadron correlations
- Other differences
 - Event mixing: mixing two Z events
 potentially remove MPI better
 - ightarrow Observable: correlation function ΔN

22

Summary

- and finalized to search for *diffusion wake*
- The measurement is performed with three different ranges of $x_{J\nu}$ to select events with different amounts of parton energy loss
- \Rightarrow the best fit of the diffusion wake amplitude for the lowest $x_{J_{\gamma}}$ is about 0.5%

• Jet-track η and ϕ angular correlations in photon-jet events have been firstly measured

• The data show the diffusion wake dip for the lowest $x_{J_{\gamma}}$ and further provides probability limits;

SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29

Yeonju Go (BNL)

Hard Probes 2024 @ Nagasaki, Japan / 2024 September 23-27

Z-jet angular correlations

SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29

Zoom-in Y_{corr}/Y_{uncorr}

• diffusion wake dip shown for the lowest $x_{I_{\nu}}$

Systematic Uncertainty Determination

- To avoid double-counting the statistical uncertainties, a χ^2 test is performed for each source of systematic uncertainty
- The 68% probability level obtained by splitting the datasets 200 times under the same nominal condition, which reflects purely statistical fluctuations $\rightarrow \chi^2_{cut}$
- Systematic sources which pass the χ^2_{cut} are deemed systematically significant, whether due to a real systematic difference or as the result of a residual statistical fluctuation.

Systematic Uncertainty Summary

• For the double ratio, the different uncertainty contributions are evaluated according to the χ^2 test specifically for this quantity by varying the numerator and denominator together.

Yeonju Go (BNL)

Prompt Photons

• Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

E

Prompt Photons

• Direct photon

- ➡ produced from primary vertex
- ➡ Processes : Compton scattering, Annihilation

Fragmentation photon

radiated from partons after the primary hard scattering

Prompt Photons

• Direct photon

- produced from primary vertex
- ➡ Processes : Compton scattering, Annihilation

Fragmentation photon

radiated from partons after the primary hard scattering

Decay photon

- \Rightarrow decayed from hadrons, such as $\pi^0 \rightarrow \gamma \gamma$
- the two decay photons often have small opening angles
 - \rightarrow reconstructed as a single high p_T γ
- major background

Edium response (wake) in jet direction PRL 126 (2021) 072301 ਓ <mark>⊢ 3.5</mark>⊦ CMS ATLAS 25 1_80 **10PbRt 5cent210-9025**, vs **30**2 TeV, 200eptt 150-70% 5 $P_{p}+Pb, \sqrt{s_{NN}} = 5.02 \text{ TeV}, 1.4-1.7 \text{ nb}^{-1}$ GĕW 15-30 30-60 >60 p_{τ}^{Z} [GeV] 2.5 Yhadron/N^{trig} Pb+Pb/NPb+Pb 0-1 2 hadron/N^{tr1g} 0-10% $p_T^Z > 30 \text{ GeV/c}$ 8 GeV 25 1 80 20 10 15 15 5 8.1 0.6 p^{trk} (GeV/c) (Ge\ р^{trк} 1.6 .4 $|\mathbf{0}|$ Ľ Ľ 567 3 10 Pbl 197 <u>क0</u> **G**æv 0.8 0.6 25 relative to the jet 265 2503055 29 but, hardto () and p between in the () parton show Yonju**l**G4 (BNL) <u>o</u> 1.4

