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• When a high-pT parton loses energy in medium, the energy may be transferred to the medium  

• Typical structure of medium response; 
➡ enhancement in the jet direction, called e.g. wake 
➡ depletion in the opposite jet direction, called e.g. diffusion wake

Medium response induced by jets
PRL 103, 152303 (2009)

Jet
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Diffusion wake using -jetsγ

diffusion wake  
from jet2

parton shower 
and wake from jet1

parton shower  
and wake from jet2
diffusion 
wake  
from jet1 diffusion wake

γ wake,
parton shower

• Diffusion wake (depletion) in boson-jet events;  
➡unlike di-jet events, a jet associated with a boson e.g. photon is NOT contaminated by  

in-medium parton shower modification or wake caused by the other jet in the opposite direction

jet1

jet2

Di-jet -jetγ

jet1
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• Note differences in analysis between ATALS and CMS 
➡ track pT ranges 
➡ different background subtraction methods

Previous measurements of Z-hadron correlations 

ATLAS, PRL 126 (2021) 072301

CMS, PRL 128 (2022) 122301
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• Particle enhancement at  in the previous CMS Z-hadron correlation 
measurement is explained by MPI effect by CoLBT

Δϕ(trk, Z) ∼ 0

Previous measurements of Z-hadron correlations 
CMS, PRL 128 (2022) 122301

MPI included

PRL 127 (2021) 082301CoLBT-hydro
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• Jet-hadron angular correlations not only in  but also in  to distinguish the diffusion wake 
from MPI 

ϕ η

3D jet-hadron angular correlations

pp Pb+Pb 0-10 %

Diffusion wakePRL 130, 052301 (2023), CoLBT
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• Smaller  indicates larger jet energy loss and longer path through the medium 
and hence larger medium response i.e., diffusion wake  

• However, the MPI signal has no significant dependence on the , while the diffusion wake 
does

xJγ = pjet
T /pγ

T

xJγ

Diffusion wake: dependence on jet energy loss

1< <2 GeVptrack
T

0< <2 GeVptrack
T

Pb+Pb

pp

Diffusion Wake Multi-parton interaction (MPI)PRL 130, 052301 (2023), CoLBT
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• Centrality 0-10% 

• Photons 
➡ 90-180 GeV and | |<2.37 
➡ only leading prompt Isolated photons  

(direct+fragmentation photons) 

• Jets 
➡  > 40 GeV and | |<2.5 

➡ only leading jets in ( ,jet) > 3 /4  

• Tracks 
➡ 0.5-2 GeV and | |<2.5 
➡ (jet, track) > /2 

• Three  regions: ,  and 

η

pT η
Δϕ γ π

η
Δϕ π

xJγ 0.3 < xJγ < 0.6 0.6 < xJγ < 0.8 0.8 < xJγ < 1.0

Analysis selections

Δϕ(h, jet), Δη(h, jet)
Jet

γ

→ low-pT tracks; sensitive to the medium response 

→ in the opposite hemisphere from jet 

less jet energy losslarger jet energy loss

→ back-to-back photon-jet in phi 



Yeonju Go (BNL) SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29 9

• The yield distributions as a function of  
| (jet, track)| in the three  regions are 
consistent with each other within uncertainties 
➡ in agreement with the theory expectation

Δη xJγ

| (jet, track)| in pp collisionsΔη
arXiv:2408.08599

Multi-parton interaction (MPI)

PRL 130, 052301 (2023),  
CoLBT
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• Tracks produced from the bulk medium 
constitute a background  
➡ estimated using an event mixing technique  
➡ this “uncorrelated tracks” ( ) is used as a 

reference for the track-jet correlation in photon-
jet events.  

• Event mixing technique 
➡ A photon-jet pair in a given event is matched 

with tracks in a different minimum-bias (MB) 
Pb+Pb event  

➡ When mixing the two events, an MB Pb+Pb 
event is chosen to have similar properties as 
the signal event 

- i.e. , event plane angle, vertex z position

Yuncorr

ΣEFCal
T

| (jet, track)| in Pb+Pb collisionsΔη

arXiv:2408.08599
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ΣEFCal
T from the photon–jet production

11

Event Mixing Matching Condition

ΣEFCal
T  in events with the photon–jet production (“signal” event)

= ΣEFCal
T from the photon–jet production

+ ΣEFCal
T from bulk medium without the photon–jet production

is estimated in pp data (cross-checked with MC),  
and has a mean value  = 17 GeV ΣEFCal,pp

T

• 50% variation on  is considered as systematic uncertainties 
➡  this approximately 1  of the  distributions 
± ΣEFCal,pp

T
σ ΣEFCal,pp

T

correlated 

uncorrelated 

When mixing signal and MB events, 

 in MB event =  in a given signal event -  ΣEFCal
T ΣEFCal

T ΣEFCal,pp
T
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•  indicates the relative modification of bulk medium 

• No clear diffusion wake signal found within uncertainties for the higher  regions 

• Small diffusion wake signal shown in the lowest  region 

Ycorr /Yuncorr
xJγ

xJγ

12

Relative yield ratio: Ycorr/Yuncorr
(Ycorr /Yuncorr)xJγ=0.3−0.6 (Ycorr /Yuncorr)xJγ=0.6−0.8 (Ycorr /Yuncorr)xJγ=0.8−1.0

γ γ

Y c
or

r/
Y u

nc
or

r

|Δη(jet, track) |0
diffusion wake?

?

1
Nγ−jet

d2N jet−track

dΔηdΔϕ
 or  =Ycorr Yuncorr

arXiv:2408.08599
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• There is a clear but small diffusion wake dip at the lowest xJγ

Diffusion wake signal
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/2π(jet,track) > φ∆
This is a personal plot, reproduced from the official ATLAS figure

reflected points
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• The results are consistent with 
unity within uncertainties 
➡ no significant -dependence of 

the diffusion wake is found
xJγ

Double ratio

γ

γ Y c
or

r/Y
un

co
rr

|Δη(jet, track) |0

xJγ = 0.8 − 1.0

xJγ = 0.3 − 0.6

?

arXiv:2408.08599
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Diffusion wake amplitude

a0 + adw ⋅ e−|Δη(jet,track)|2/(2σ2
dw)

Diffusion Wake Amplitude Diffusion Wake Width 

adw σdw

• To quantify the diffusion wake, Gaussian fits are performed 
➡ diffusion wake would have a negative amplitude (  < 0)  

• For probability distributions, Monte Carlo sampling method is used 
➡ statistical and systematic uncertainties and their correlations are considered 
➡ the fit is repeated with the  fixed, representing a different hypothesis each time,  

while  and  are treated as free parameters

adw

σdw
adw a0
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This is a personal plot, reproduced from  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reflected points
<1% modulation?
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Probability distributions
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arXiv:2408.08599

• Results are consistent with no signal (i.e., =0) within 1  (higher ) or 2  (lowest ) 

• Best fits of the diffusion wake amplitude is negative for all  

• Diffusion wake amplitude of best fit for the lowest  is 0.5-0.8% for the diffusion wake 
width range of 0.5-1.0 

• Statistical uncertainty dominates in the probability distributions as systematic uncertainties are 
highly correlated bin-by-bin

adw σ xJγ σ xJγ
xJγ

xJγ
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Double ratio amplitude 
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• Data indicates no significant, but small, diffusion wake signal that increases with larger parton energy 
loss 

• CoLBT prediction of -0.00185 is consistent with the data within the 68% confidence level upper limit 

• A diffusion wake double amplitude  value smaller than -0.0058 can be ruled out at 95% 
confidence level 

• Stat. uncert. dominates in probability distribution; more statistics will be valuable

bdwr

arXiv:2408.08599

b0 + bdwr ⋅ e−|Δη(jet,track)|2/(2σ2
dwr)

Double Ratio  
Amplitude 

Double Ratio 
Width 
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Discussion: how many particles are we missing?

1
Nγ−jet

d2Njet−track

dΔηdΔϕ
~ 90 at |Δη(jet, track) | = 0

Ycorr /Yuncorr is about 0.5-0.8%

0.45-0.75 particles 
(less than 1 particle in unit )  
are reduced by diffusion wake! 

η, ϕ

•  

•  
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Comparison between ATLAS vs CMS

CMS preliminary 0-30%

• Both results shows diffusion wake dip, qualitatively consistent with each other
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See also Yen-jie and Yi’s talks 
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Comparison between ATLAS vs CMS - (1)

Pythia 8.305
pp 5.02 TeV
Z+jet production
40 <  < 350 GeV
| | < 2.4

(Z, jet) > /2

pZ
T

ηZ

ϕ π

• Pros 
➡ Z: clean probe 
➡ centrality control 
➡ no jet reconstruction → potentially 

reach highly quenched jets which 
usually can’t be experimentally 
reconstructed 

• Cons 
➡ no jet reconstruction → no control 

of jet energy loss, and smearing 
of angular correlation (especially 
in eta)

CMS
Z+hadron correlations
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• Pros 
➡ Z: clean probe 
➡ centrality control 
➡ no jet reconstruction → potentially 

reach highly quenched jets which 
usually can’t be experimentally 
reconstructed 

• Cons 
➡ no jet reconstruction → no control 

of jet energy loss, and smearing 
of angular correlation (especially 
in eta)

Comparison between ATLAS vs CMS - (1)
CMS

Z+hadron correlations
ATLAS Jet+hadron  

correlations in +jet eventsγ
• Pros 
➡ jet reconstruction 
➡ direct angular correlation between  

jet and hadrons 
➡ jet-pT/energy loss control → 

differential  measurement 

• Cons 
➡ background photons (decay from e.g. 

) → potentially measure smaller 
diffusion wake from dijet contamination 

➡ can’t access extremely quenched jets 
below <0.3

xJγ

π0

xJγ
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• Other differences  
➡ Event mixing: mixing two Z events 
→ potentially remove MPI better  

➡ Observable: correlation function 
  

➡ …
ΔN

Comparison between ATLAS vs CMS - (2)
CMS

Z+hadron correlations
ATLAS Jet+hadron  

correlations in +jet eventsγ
• Other differences 
➡ Event mixing: mixing ( +jet signal)  

and (minimum-bias) events 
; with  difference to account for 
contribution from +jet production 
(including MPI)  

➡ Observable: Yield ratio 
➡ …

γ

ΣEFcal
T

γ
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Summary
• Jet-track  and  angular correlations in photon-jet events have been firstly measured  

and finalized to search for diffusion wake
η ϕ

• The measurement is performed with three different ranges of  to select events with 
different amounts of parton energy loss

• The data show the diffusion wake dip for the lowest  and further provides probability limits;
➡ the best fit of the diffusion wake amplitude for the lowest  is about 0.5%

xJγ

xJγ
xJγ

reflected points
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the official ATLAS figure
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BACK UP
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•  of (Z, jet) ~ 1.3 

•  of (Z, jet) ~0.15

σ Δη

σ Δϕ

Z-jet angular correlations
Pythia 8.305
pp 5.02 TeV
Z+jet production
40 <  < 350 GeV
| | < 2.4

(Z, jet) > /2

pZ
T

ηZ

ϕ π
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• diffusion wake dip shown for the lowest xJγ

Zoom-in Ycorr/Yuncorr
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• To avoid double-counting the statistical uncertainties, a  test is performed for each source 
of systematic uncertainty  

• The 68% probability level obtained by splitting the datasets 200 times under the same nominal 
condition, which reflects purely statistical fluctuations →  

• Systematic sources which pass the  are deemed systematically significant, whether due to a 
real systematic difference or as the result of a residual statistical fluctuation.

χ2

χ2
cut

χ2
cut

Systematic Uncertainty Determination
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• For the double ratio, the different uncertainty contributions are evaluated according to the  test 
specifically for this quantity by varying the numerator and denominator together. 

χ2

Systematic Uncertainty Summary
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• Direct photon 
➡ produced from primary vertex 
➡ Processes : Compton scattering, 

Annihilation

Prompt Photons

Direct photons

quark-gluon
Compton scattering

quark - anti-quark
Annihilation
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• Direct photon 
➡ produced from primary vertex 
➡ Processes : Compton scattering, 

Annihilation

Prompt Photons

Fragmentation

Prompt photons  
= Direct + Fragmentation photons

Direct photons

quark-gluon
Compton scattering

quark - anti-quark
Annihilation

• Fragmentation photon 
➡ radiated from partons after the primary hard 

scattering
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• Direct photon 
➡ produced from primary vertex 
➡ Processes : Compton scattering, 

Annihilation

Prompt Photons

Fragmentation

Prompt photons  
= Direct + Fragmentation photons

Direct photons

quark-gluon
Compton scattering

quark - anti-quark
Annihilation

• Fragmentation photon 
➡ radiated from partons after the primary hard 

scattering

• Decay photon 
➡ decayed from hadrons, such as  
➡ the two decay photons often have  

small opening angles  
→ reconstructed as a single high pT  

➡ major background

π0 → γγ

γ

π0

γ
γ
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Medium response (wake) in jet direction
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• Numerous observations of enhancement of low-pT particles and particles at larger angles 
relative to the jet 
➡ but, hard to disentangle between in-medium parton shower modification and medium response 
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