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Our project

To get both hydrodynamic IS and initial hard partons from preferrably the same initial state,
make hydrodynamic and jet parts talk to each other, add hadronization scheme and jet finding.
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Time-like parton shower

Monte Carlo simulation of DGLAP equations for a parton shower between virtuality scales Q↑
(from Born process in hard scattering) and Q↓ = 0.6 GeV.

Sa(Qa↑ ,Qa)

(
αs(F(χ,Q2))

2π
Pa→b,c(χ)

)
= p(Qa, χ) .

Vacuum shower developed
by Martin Rohrmoser
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Time-like parton shower + spacetime picture
Monte Carlo simulation of DGLAP equations for a parton shower between virtuality scales Q↑
(from Born process in hard scattering) and Q↓ = 0.6 GeV.

On top of that:

The time evolution is split into timesteps (ideal for merging with hydrodynamic medium evolution)

Parton splitting (for high-Q2 partons) happens with a probability according to mean life times
between the splittings ∆t = E/Q2.
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Medium modifications

In Nature: continuous change with Q2, in our model: separation into two regimes.

High-Q2 regime:

dQ2

dt
= q̂(T, p)

Low-Q2 regime:

elastic scatterings off medium
partons

medium-induced radiation
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Medium modifications: high-Q2 sector

We adopt effective treatment from T. Renk, Phys. Rev. C78 (2008) 034908:
dQ2

dt
= q̂(T, p)

q̂(T, p) = q̂JET(T )×qcof(p)

q̂JET(T ) = 5.5 ·T 3 2
1+T/Tc

from K. M. Burke et al. Phys. Rev. C 90 no. 1, (2014) 014909,

qcof(p) = 1.69+1.25·p
4.07+p+0.85ln(p+1) [p in GeV] from Gossiaux, Aichelin, Phys. Rev. C 78 (2008) 014904,

such that qcof(20GeV) = 1.

There is a small continuous virtuality increase, which causes more splittings, leads to a wider jet with
some apparent energy loss.
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As a result:

jets form a little faster:
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Medium modifications: low Q2 sector

elastic scatterings Medium-induced gluon radiation
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Elastic scatterings

t−channel, IR-regulated (next slide)

d2σ
qq(q̄)
el

d2qT
=

2CF

Nc

α2
s

(q2
T +µ2)2 and

d2σ
qg
el

d2qT
=

CA

CF

d2σ
qq
el

d2qT
,

µ2 = κm2
D [Gossiaux, Aichelin, Phys. Rev. C 78 (2008) 014904],

κ = 0.16.

αs,eff(T )≈
0.42

ln
(

1.15+0.64 T
Tc

) , with Tc = 0.15 GeV.
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Medium model

Coming from a well-established heavy-quark production model.

Debye mass m2
D =

(
1+ N f

2Nc

)
4παs,effT 2

quark/gluon masses mtherm
g = mD/

√
3,

mtherm
q =

√
πCF αs,eff

2 T
J.-P. Blaizot and E. Iancu Phys. Rept. 359 (2002)
355–528

Effective coupling
Gossiaux, Aichelin, Phys. Rev. C 78 (2008) 014904

αs,eff(T )≈
0.42

ln
(

1.15+0.64 T
Tc

) , with Tc = 0.15 GeV.
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Medium-induced radiation: single (incoherent) radiation process

Basic idea: Gunion, Bertsch ’82

Extension for heavy quark projectile and dynamical light
quarks:
Aichelin, Gossiaux, Gousset, Phys. Rev. D89, 074018 (2014):

In the region of small x, the matrix elements from QCD can be approximated by so-called scalar
QCDwhich at high energy leads to a factorized formula for the total cross section of the radiation
process: dσQq→Qqg

dxd2kT d2lT
=

dσel

d2lT
Pg(x,kT , lT )θ(∆), where

Pg(x, k⃗T , l⃗T ;M) =
CAαs

π2
1− x

x

(
k⃗T

k⃗T
2
+ x2M2

− k⃗T − l⃗T
(k⃗T − l⃗T )2 + x2M2

)2

,

Allows for finite
quark/gluon masses
→ heavy quark jets
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Towards coherent radiation

For the multiple scatterings in medium,
one has to take into account coherence
effects:

- QED: Landau-Pomeranchuk-Migdal
(LPM) effect,

- QCD: Baier-Dokshitzer-Mueller-Peigne-
Schiff-Zakharov (BDMPS-Z)

ω

ω
dN
dω

∼ L/λ
GB

BDMPS-Z
GLV

ωBH ωc

1√
ω 1

ω

One expects to have three regimes:

GB: Gunion-Bertsch regime, incoherent radiation

BDMPS-Z: radiation from multiple coherent scatterings

GLV: radiation with a single hard scattering
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The implementation

For low-Q2 partons: at each
timestep, an elastic scattering
and/or a radiation of
pre-formed gluon happens with
a probability Rel∆t, Rinel∆t
respectively.

Each parton can generate
arbitrary number of pre-formed
gluons (∝blob).

We adopted a variant of the
faithful implementation of the
BDMPS-Z by Zapp, Stachel,
Wiedemann, JHEP 07 (2011),
118 =⇒

virtual incoherent gluon formation according to GB seed

Ns = 1, ϕ = 0

Evolve one timestep ∆t

Gluon phase accumulation
ϕ → ϕ +∆ϕ

Still in medium (T > Tc)?

No Yes

ϕ > ϕc?

Yes No

Elastic rescattering?

Yes No

Ns → Ns +1, update k

Accept gluon with
probability 1/Ns

No Yes Add virtual gluon as radiated/realised

Discard virtual gluon Adjust projectile kinematics accordingly
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Coherent radiation benchmark in SUBA-Jet

In order to reproduce BDMPS-Z behaviour, one has to assume that:

jet = energetic low-Q quark

quark only radiates gluons

radiated gluons only scatter
elastically

QGP scattering centers have infinite
mass

ω is conserved in elastic scatterings

besides, k⊥ ≪ ω ≪ E
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Coherent radiation benchmark (2)
1) 100 TeV jet, a proxy for E → ∞ limit.
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E = 100 TeV, L = 4 fm
T = 400 MeV, ∆ϕ = (2PQ · k/EQ)∆t
mq →∞, Energy conservation

BDMPS-Z

GLV

SUBA-Jet, after LPM evolution, 〈Ng〉 = 3.462(3)

SUBA-Jet, before LPM evolution, 〈Npreformed
g 〉 = 308.43(3)

ω
dNBDMPS-Z

dω
≃ 2αsCR

π
ln |cos(ΩL)|

(Caron-Huot, Gale, 2010; Mehtar-Tani, 2019)

Setup:
T = 400 MeV, αs = 0.4
µ ≈ 0.44 GeV, mtherm

g = 0.626 GeV,

mtherm
q = 0.367 GeV, λ

q
el = 0.18 fm, and

λ
g
el = 0.08 fm.

LPM modifies radiation spectrum at all scales
(BH behaviour not present at small ω - too
dense medium)

At large ω, GLV limit is reproduced.

A very strong LPM suppression:
out of 300 virtual gluons only 1% become real
radiated gluons.
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2) A more realistic 100 GeV jet.
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SUBA-Jet, after LPM evolution, 〈Ng〉 = 6.445(3)

SUBA-Jet, before LPM evolution, 〈Npreformed
g 〉 = 111.94(2)

BDMPS-Z

At large ω, the spectrum resembles GLV,

but in fact the fall-off is due to energy
conservation.

Also a very strong LPM suppression here: only
6% of virtual gluons become real ones.
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Indeed, on average multiple scatterings are needed to radiate a single gluon.
However the spread in Ns is large.
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Relaxing BDMS-Z assumptions

dσel

d2lT
→ 8α2

s

9(l⃗T
2
+µ2)2

w conservation is used in
BDMS calculation,

we explore two other
choices:

k+ conservation

energy reduction
(energy gain by the
medium parton is
subtracted from the
projectile gluon)
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Relaxing BDMPS-Z assumptions (2)

Realistically, energy of the trial radiated gluons is not conserved but reduced in subsequent scatterings.
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Different assumptions for elastic
scatterings:

(dashed) energy conservation
original BDMPS

(solid) k+ = E + pz conservation

(dotted) energy reduction
the most realistic

⇒ at low ω the treatment of elastic scatterings becomes quite important
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Relaxing BDMPS-Z assumptions (3)
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∆ϕ = (2PQ · k/EQ)∆t
E = 100 GeV, L = 8 fm, T = 400 MeV

mq →∞, Energy reduction 〈Ng〉 = 8.129(3)

mq = 0, Energy reduction 〈Ng〉 = 12.249(4)

mq →∞, Energy conservation 〈Ng〉 = 6.445(3)
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Curves in reverse order:

mq → ∞ + energy conservation:
(dotted) original BDMPS-Z

mq → ∞ + energy reduction:
(solid) account for energy reduction
in scatterings

mq = 0 + energy reduction:
(dashed) the most realistic case

⇒ both improvements change the low-ω
spectrum significantly w/r/t/ BDMPS-Z.
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Path length dependence of radiative energy loss

In both BDMPS-Z mimicking (left) and realistic (right) cases, the pathlength dependence is:
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for smaller L:
∝ Lα , α > 1
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Summary

A building block of the state-of-the-art jet+medium framework SUBA-Jet:

We’ve constructed a Monte Carlo implementation of coherent radiative enegry loss.

Radiation seed is based on Gunion-Bertsch ⇒ massive quarks/gluons.

In a benchmark setup, BDMPS-Z spectrum of radiated gluons is reproduced

At very large ω, GLV limit is reproduced as well.

In a more realistic setup, gluon radiation spectrum changes considerably with respect to BDMPS-Z
form even in static medium.

One way to state the reason is that there is no clear separation of scales:
E ≫ ω ≫ kT in theory, but in practice they may and do overlap.

Outlook → Josef’s talk:
Run the jet energy loss model over a realistic medium background (vHLLE, already in progress), employ
hollistic initial state, compute basic observables, look at the effects of medium response.
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