Jet Modification and Hard-Soft Correlations (SoftJet 2024)

Study of jet-induced medium response in high-energy heavy-ion collisions within the CoLBT-hydro model

Zhong Yang Central China Normal University

Tokyo Japan 2024.9.27-2024.9.30

Outline

- **Introduction**
- **LBT/CoLBT-hydro model**
- **Jet-induced medium response**
	- **Jet-induced diffusion wake**
	- **3D structure of diffusion wake**
	- **EECs in realistic heavy-ion collisions**
- **Summary and Outlook**

Jet in heavy-ion collisions

Jet-induced medium response

Jet-induced medium response in the form of Mach-cone-like excitation.

[Casalderrey-Solana, Shuryak, Teaney, 2005; Ruppert, Muller, 2005; Gubser, Pufu, 2008; Qin, Majumder, Song, Heinz, 2009; Yan, Jean, Gale, 2017; …]

The front wake which is along with the jet direction will modify the particles distribution in jet.

Jet-induced medium response

Jet-induced Mach-cone could extract the QGP properties

R.B.Neufeld Phys.Rev.C 79 (2009) 054909

(1) **Width of front wake** of Mach cone is related with viscous properties of QGP medium;

(2) **Mach cone angle** is sensitive to EoS.

$$
\sin\theta = \frac{c_s}{v}
$$

Linear Boltzmann Transport(LBT) model

$$
p_1 \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) |M_{12 \to 34}|^2 (2\pi)^4 \delta^4(\sum_i p^i) + inelastic
$$

Medium-induced gluon(High-Twist):

[Wang, Guo, 2001]

LBT: Pure pQCD description of parton transport

SoftJet 2024

LBT: Jet-induced medium response

Medium response: recoil and negative particles

SoftJet 2024

CoLBT-hydro model

- 1. LBT for energetic partons(jet shower and recoil)
- 2. Hydrodynamic model for bulk and soft particles: CLVisc
- 3. Sorting partons according to a cut-off parameter p_{cut}^0 (2 GeV) Hard partons: $p\partial f(p) = -C(p)$ ($p \cdot u > p_{cut}^0$) Soft and negative partons: $j^{\nu} = \sum p_i^{\nu} \delta^{(4)}(x - x_i) \theta(p_{cut}^0 - p \cdot u)$
- 4. Updating medium information by solving the hydrodynamics equation with source term *i*

$$
\partial_{\mu}\tilde{T}^{\mu\nu} = j^{\nu}
$$

5. The final hadron spectra:

(1) hadronization of hard partons within a parton recombination model

(2) jet-induced hydro response via Cooper-Frye freeze-out

CoLBT-hydro: Jet-induced medium response

We run model twice with and without jet to subtract hydro background

The Mach-cone-like jet-induced medium response including the diffusion wake is clearly seen in the right panel.

Jet energy loss simulated by CoLBT-hydro

CoLBT-hydro model is an effective model to describe jet energy loss in QGP (RHIC, LHC, single jet and trigger-jet)

Studying of jet-induced medium response

Jet fragmentation function Jet shape

Jet-induced medium response lead to enhancement of soft hadrons at large angle inside jet

SoftJet 2024 11 and 2024 11 and 2024 12:00

Medium response and soft gluon radiation

Medium response leads to enhancement of soft hadrons along the direction of jet. Medium-induced gluon radiation has the similar effect.

full hydrodynamic response

 -0.24

 0.16

0.08

 0.00

 -0.08

 -0.16

 -0.24

Medium response: *δf*(*p*) ∼ *e*−*p*⋅*u*/*^T*

Formation time: $\tau_f = \frac{2\omega}{k^2}$ k_T^2 $k_T^2 = \hat{q} \tau_f \quad \tau_f \approx \sqrt{2 \omega / \hat{q}}$ Mean-free-path limits the formation time: $\int \tau_f \leq \lambda \sim 1/T$ $\hat{q} \sim T^3$ Medium induced gluon radiations: $\omega \approx \lambda^2 \hat{q}/2 \sim T$

Diffusion wake: an unambiguous part of the jet-induced medium response. It can lead to depletion of soft hadrons in the opposite Zhong Y, et al. arXiv:2206.02393
direction of the jet.

Azimuthal distribution of soft hadrons

Motivation to study 3D structure of DW

(1) The previous studies of diffusion wake focus on the azimuthal angle.

(2) The jet is a 3D observable, thus the diffusion wake should also have a 3D structure.

3D structure of diffusion wake

Diffusion wake valley(DF-wake valley): a valley is formed on top of the MPI ridge due to the depletion of soft hadrons by jet-induced diffusion wake.

3D structure of diffusion wake

3D structure of diffusion wake

2-Gaussian fitting:
$$
F(\Delta \eta) = \int_{\eta_{j1}}^{\eta_{j2}} d\eta_j F_3(\eta_j) (F_2(\Delta \eta, \eta_j) + F_1(\Delta \eta))
$$

$$
F_2(\Delta \eta, \eta_j) = A_2 e^{-(\Delta \eta + \eta_j)^2/\sigma_2^2}
$$

Sensitivity to jet energy loss

Longer propagation length and larger jet energy loss leads to deeper DF-W valley.

The MPI ridge has a very weak and non-monotonic dependence on $x_{j\gamma}$ due to the non-monotonic dependence of the propagation length on $x_{j\gamma}$ for mini-jets from MPI.

Sensitivity to shear viscosity

Competition between increased radial flow and negative longitudinal pressure in the shear correction of the energy momentum tensor leads to a a slightly smaller MPI ridge and a deeper DF-wake valley in viscous hydro than in an ideal hydro.

Sensitivity to equation of state

The effective speed of sound is higher in eosq than s95.

High speed of sound \longrightarrow a larger Mach cone angle \longrightarrow shallower DF-wake valley

a stronger radial flow \longrightarrow reduce soft hadrons \longrightarrow small MPI ridge

SoftJet 2024 20

Measurement of 3D structure at LHC

ATLAS Jet-hadron correlation

$$
Y_{corr} = \frac{1}{N^{\gamma-jet}} \frac{d^2 N^{jet-track}}{d \Delta \eta \Delta \phi}
$$

The ratio of diffusion wake compared to hydro background is a few. No significant $x_{j\gamma}$ -dependence of the diffusion wake is found.

Measurement of 3D structure at LHC

Energy-energy correlators

Energy-energy correlators(EEC) have recently emerged as excellent jet substructure observables for studying the space-time structure of the jet shower.

$$
\langle \varepsilon^{(n)}(\overrightarrow{n_1}) \dots \varepsilon^{(n)}(\overrightarrow{n_k}) \rangle
$$

 $\epsilon^{(n)}(\overrightarrow{n_{1}})$ measures the asymptotic energy flux in the direction $\overrightarrow{n_{1}}$

$$
\varepsilon^{(n)}(\overrightarrow{n_1}) = \lim_{r \to \infty} \int dt r^2 n_1^i T_{0i}(t, r\overrightarrow{n_1})
$$

The n-th weighted normalized two-point correlation:

$$
\frac{\langle \varepsilon^{(n)}(\overrightarrow{n_1}) \varepsilon^{(n)}(\overrightarrow{n_2}) \rangle}{Q^{2n}} = \frac{1}{\sigma} \sum_{ij} \frac{d\sigma_{ij}}{d\overrightarrow{n_i} d\overrightarrow{n_j}} \frac{E_i^n E_j^n}{Q^{2n}} \delta^{(2)}(\overrightarrow{n_i} - \overrightarrow{n_1}) \delta^{(2)}(\overrightarrow{n_j} - \overrightarrow{n_2}) \qquad n = 1
$$

$$
\frac{d\Sigma^{(n)}}{d\theta} = \int dn_{1,2}^{\rightarrow} \frac{\langle \varepsilon^{(n)}(\overrightarrow{n_1}) \varepsilon^{(n)}(\overrightarrow{n_2}) \rangle}{Q^{2n}} \delta(\overrightarrow{n_1} \cdot \overrightarrow{n_2} - \cos\theta) \qquad \cos\theta = \overrightarrow{n_1} \cdot \overrightarrow{n_2}
$$

EECs from a quark going through the QGP brick

The EEC distribution from the medium response shifts to a larger angle with an enhanced magnitude if μ_D increases. While the quark-radiated-gluon correlator decreases with μ_D and peak shifts slightly to large angles.

EECs from a parton shower going through the QGP brick

EEC distributions from correlation between shower partons suppressed at both small and large angles relative to the vacuum EEC (dashed).

The total correlator of all partons (shower, medium-response and radiated gluons) inside the modified jet enhances at large angles due to correlations involving medium response or/and radiated gluons.

EECs in Pb+Pb collisions at LHC

EECs of *γ***-jets in Heavy-Ion Collisions.**

1. Similar to the case of a QGP brick, the EEC's in Pb+Pb collisions are suppressed at small angles due to energy loss, while they are enhanced at large angles.

2. This modification is sensitive to the Debye mass, μ_D , which determines the conviction of cash is transitive contribution determines the angular scales of each jet-medium scattering and characterizes the structure of the QGP medium in the CoLBT simulations.

3. The enhancement at large angles is reduced but still survives if a $p_T > 1 GeV/c$ cut is imposed on the final hadrons for the purpose of reducing the background in experimental analysis. If p_T $> 2 GeV/c$ cut is used, the medium enhancement at large angles is mostly gone except for the case of $K=4$.

Transverse momentum dependence of EECs

EECs of *γ***-jets in Heavy-Ion Collisions.**

AA: solid line **For high** p_T hadrons, PP result is greater than AA result. But, AA results becomes greater when you decrease $p_T^{\,h}$.

EECs of single inclusive jets

EECs of single inclusive jets in Heavy-Ion Collisions.

 q_0 is the minimum value for vacuum splitting in Pythia model

Summary

1. Studying of jet-induced medium response can help us understand QGP properties.

2. CoLBT-hydro model is an effective model to study jet quenching and jet-induced medium response.

3. Jet-induced diffusion wake is an unambiguous part of medium response which leads to depletion of hadrons in the opposite direction of jet.

4. The double-peak structure of jet-hadron correlation in rapidity direction is a unique signal of diffusion wake, and it's sensitive to energy loss, shear viscosity and EoS.

5. Jet-medium interaction will modify the EECs inside jet(γ-jet and single inclusive jet). And this modification of EECs shows a clear sensitivity to Debye screening mass. The coming experimental result can help us constrain this value of models.

Outlook

Coming 3-particles correlation, sensitive to medium properties…

EECs in vacuum and medium-induced emissions

We focus on the normalized two-point energy correlates

For a quark with energy E and initial virtuality Q=E, the vacuum splitting $q\to q+g$ at small angles and leading order (LO) in pQCD leads to the angular distribution of the energy correlators.

$$
\frac{d\Sigma_q^{\text{vac}}}{d\theta} \approx \frac{\alpha_s}{2\pi} C_F \int_0^1 dz \ z(1-z) P_{qg}(z) \int_{\mu^2}^{\Omega^2} \frac{d\mathbf{k}_{\perp}^2}{\mathbf{k}_{\perp}^2} \delta(\theta - \frac{|\mathbf{k}_{\perp}|}{z(1-z)E})
$$

\n
$$
P_{qg}(z) = \frac{1 + (1-z)^2}{z} \qquad \text{Splitting function}
$$

\n
$$
\frac{d\Sigma_q^{\text{vac}}}{d\theta} \approx \frac{\alpha_s}{2\pi} \frac{C_F}{2\theta} \left(3 - \frac{2\mu}{E\theta}\right) \sqrt{1 - \frac{4\mu}{E\theta}}
$$

\n
$$
\theta > 4\mu/E \qquad \frac{d\Sigma_q^{\text{vac}}}{d\theta} \sim 1/\theta
$$

 $\theta \rightarrow 4\mu$ / E : $\frac{1}{2}$ ron-perturbative effects take over and its behavior θ

 $\mu \ll Q$ the collinear cut-off scale below which non-perturbative effects become dominant.

EECs in vacuum and medium-induced emissions

The medium-induced gluon radiation is modeled by hist-twist approach

For a massless parton, the formation time for radiated gluon is

$$
\theta_{12} = \frac{2\ell_{\perp}}{Ez(1-z)} \qquad \tau_f = \frac{2Ez(1-z)}{\ell_{\perp}^2} = \frac{8}{\theta_{12}^2 z(1-z)E}
$$

The corresponding angular contribution to EEC is,

$$
\frac{d\Sigma_q^{\text{med}}}{d\theta} = \frac{16\alpha_s C_A}{\pi E^2 \theta^3} \int dx dz \frac{\hat{q} P_{qg}(z)}{z(1-z)} \sin^2\left(\frac{x}{2\tau_f}\right)
$$

\n
$$
= \frac{L^{5/2} \hat{q}}{\pi \sqrt{E}} \frac{8\alpha_s C_A}{(\sqrt{EL}\theta)^3} \int dz \frac{P_{qg}(z)}{z(1-z)} \times \left[1 - \frac{\sin ELz(1-z)\theta^2/8}{ELz(1-z)\theta^2/8}\right]
$$

\n
$$
\theta < \sqrt{8\pi/EL} : d\Sigma_q^{\text{med}} / d\theta \approx L^3 \hat{q} \alpha_s C_A \theta/(64\pi) \sim \theta
$$

\n
$$
\theta > \sqrt{8\pi/EL} : \frac{d\Sigma_q^{\text{med}}}{d\theta} \approx \frac{L^2 \hat{q}}{2E} \frac{\alpha_s C_A}{\theta} \left[1 + \mathcal{O}\left(\frac{1}{EL\theta^2}\right)\right] \sim 1/\theta
$$

How to calculate EEC in LBT model

How to deal with the negative parton in LBT model

Introduction

Looking for and studying QGP are the main programs in high-energy heavy-ion collisions