

Mandelstam Institute for Theoretical Physics **MITP**

1

Jet substructure

for *in* small systems **with JEWEL**

Isobel Kolbé, Govert Nijs

University of the Witwatersrand (Wits) National Institute for Theoretical and Computational Sciences (NITheCS) Mandelstam Institute for Theoretical Physics (MITP) SA-CERN Collaboration

Thank you to Carlota Andres, Rithya Kunnawalkam-Elayavalli, Wilke van der Schee, and Martha Verweij for advice and illuminating conversations.

Why R_{AA} **is the worst** (in small systems)

- **Reliance on a reference system**
- **Steeply falling production spectrum**
	- **Survival bias**
	- **Sensitive to PDFs and nPDFs**
- **Sensitive to initial condition**
	- **Geometry**
	- **Momentum anisotropy**
- **Sensitive to jet fragmentation**
- **Supposed to quantify ΔE, but**
	- **ΔE** ← *L* ← *Ncoll* **: uncontrolled**
	- \circ $\Delta E = \Delta E(T)$: *T* is uncontrolled

$$
R_{\rm AA}(p_{\rm T})=\frac{1}{\langle T_{\rm AA}\rangle}\frac{dN_{AA}/dp_{\rm T}}{d\sigma_{pp}/dp_{\rm T}}
$$

Can we do something else?

Beyond

(1) Train a BDT on all observables to distinguish quenched from unquenched

(2) cf single and pairs of observables

4

Beyond

(1) Train a BDT on all observables to distinguish quenched from unquenched

(2) cf single and pairs of observables

 R_0 -0.96 $(\Delta \rho_T)_{SD}$ -0.97 0.81 $Q_{50}^{0.3}$ -0.960.810.7 $Q_{50}^{0.5}$ -0.960.810.800.7 0% -0.960.830.820.800.7 Q_{22}^{10} = 0.970.850.830.830.830.8 $-0.970.970.960.960.960.960.96$ 970.970.970.970.970.970.980.9 $-0.960.970.960.960.960.970.970.960.96$ 9 0.98 0.99 <mark>0.98 0.99</mark> 0.98 y_{sp}-0.960.820.740.750.780.800.960.970.960.970.960.960.980. rz_{SD} 0.980.98 0.99 n gan gan gan $\tau_{2,1,SD}$ -0. 20.820.820.850.970.970.970.970.970.96 0.820.990.990.82 $1.00₀$ 990.98 $\tau_{3,SD}$ 0.970.980.980 $\tau_{3.2.5D}$ $R_{q, \, \tau D}$ 990.990.84<mark>0.99</mark>0.92<mark>0.7</mark> 90.89<mark>0.980.93</mark>0.82<mark>0.8</mark> $R_{q, k\ell D}$ $R_{g,zD}$ -(0.970.990.960.950.960.95 $1.001.00$ 990.960.960.970.980.95 $K_{k\ell D}$ -0 11.001.001.000 $.00₁$ 1.000 980.980.98 990.980.9 0.930.980.940.860.920.970.960.980.8 K_{ZD} -0 90.940.91 960.970.970.960.970.960.990 80.900.980.920.910.930.970.97 n_{SD} - $($ \mathbb{Z}_g 980.870.980.920.750.850.960.950.980 90.920.7 950.960.960.980.930.940.920.92 Zg , TD -0 0.93 0.940.960 870.980.960.970.980.910.920.830.920.8 $Z_{g, k t D} - 0$ 0.980.920. $Z_{g, zD} - 0.$ 0.82<mark>0.98</mark>0.91<mark>0.75</mark>0.84<mark>0.960.950.98</mark>0.870.910.740.920.820.73 960.960.98<mark>1</mark> 285
285
286 ă

Pairs of observables that are just as good as the full set

Isobel Kolbé (Wits) SoftJet 2024 (Tokyo)

5

Beyond

(1) Train a BDT on all observables to distinguish quenched from unquenched

(2) cf single and pairs of observables

Hydro interface for JEWEL

7

New jewel-2.4.0-hydro-2D:

- Built on jewel-2.4.0-simple
	- Similar use of temperature and velocity for scattering centers
	- Similarly separable from main jewel code.
- Can include *any* (2+1)D background with *T* and (u_x, u_y) information
- \bullet Jet production location from N_{coll} information
- \bullet Subtleties with density determination

$$
n_{eff} = \frac{n_0}{\cosh \eta - \sinh \eta \cos \theta}
$$

Trajectum

● **Utrecht / CERN / MIT**

● **Contains:**

- **Initial stage (Trento)**
- **pre-eq.**
- **Hydro**
- **Freeze-out**
- **Hadron phase**
- **Fast**
- **Bayesianized parameter lists**

8

Ultra-preliminary results - groomed pT

Ultra-preliminary results - Jet Mass

Simple: Standard JEWEL medium.

Hydro: 1k JEWEL events each on 500 *Trajectum* **profiles.**

Hydro samples: 200k JEWEL events on each of 10 randomly chosen *Trajectum* **profiles.**

Ultra-preliminary results - R_{AA}

Hydro: 1k JEWEL events each on 500 *Trajectum* **profiles.**

Hydro samples: 200k JEWEL events on each of 10 randomly chosen *Trajectum* **profiles.**

All normalized to JEWEL vacuum.

Really need ensemble

What (other) physics can we do with this?

- **Initial goal:** Explore new observables in a variety of collision geometries.
- Explore *any* medium effect on jets:
	- Time-delays
	- Flowing medium
- Realistic R_{AA} vs v_2 in AA (more work)

2104.09513

2112.04593

What does the modification of high- p_T partons look like in small systems?

> What role do initial state fluctuations play on jet properties?

How do other environments affect jets?

Backups

Need a space-time picture

Time reclustering: $d_{ij} = \min \left(p_{T,i}^{2p}, p_{T,j}^{2p} \right) \frac{\Delta R_{ij}^2}{R^2}$ $p = 0.5$ $p_{T,i} \theta^2 \sim$

 τ_{form}

15

$R_{AA} \otimes v_2$ non-trivial even in AA

What is the pathlength dependence?

$$
\langle \epsilon \rangle = L^{\rho} \over \beta = 1.02^{+0.09}_{-0.06}
$$

Caveat: **Centrality**

Start by varying the pathlength

Isobel Kolbé (Wits) SoftJet 2024 (Tokyo)

17

Lighter ions

[ATLAS: 2206.01138](https://arxiv.org/pdf/2206.01138.pdf)

Bierlich *et.al.* [1806.10820](https://arxiv.org/abs/1806.10820)

No quenching?

ANGANTYR with string-shoving OFF

Caveat: 0-20% bin in pPb is quantitatively different to 0-5%

Small is not the only problem

 $\mu_D \sim gT$

 $\lambda_{mfp} \sim \frac{1}{\rho \sigma} \sim \frac{1}{g^2 T}$ PbPb R^2 =6.5 fm² XeXe R^2 =6.0 fm² $[{\rm fm}]$ y [fm] T_{max} ~460 MeV T_{max} ~410 MeV $-6 - 4 - 2 0 2 4 6$ $-6 - 4 - 2 0 2 4 6$ x [fm] x [fm] OO B^2 =3.9 fm² ArAr $R^2 = 5.3$ fm² y [fm] y [fm] Ω T_{max} ~480 MeV T_{max} ~500 MeV $-6 - 4 - 2 0 2 4 6$ -6 -4 -2 0 2 4 6

Smaller systems are hotter at the same multiplicity

 x [fm]

 x [fm]

Single, massless, non-interacting, scalar field in a finite box

The dead cone

In-medium radiation fills the dead cone

, v_2 , and Centrality

Subtract low mult-data (match ATLAS)

R_{AA} , v_2 , and Centrality (Alternative - ATLAS)

R_{AA} , v_2 , and Centrality (Alternative - peripheral)

Correlated yield

Why R_{AA} is not ideal for small systems

- **Reliance on a reference system**
- **Steeply falling production spectrum**
	- **Sensitive only to large ΔE**
	- **Sensitive to PDFs and nPDFs**
	- **Species-dependent**
- **Sensitive to initial condition**
	- **Geometry**
	- **Momentum anisotropy**
- **Sensitive to jet fragmentation**
- **Supposed to quantify ΔE, but**
	- **ΔE** ← *L* ← *Ncoll* **: uncontrolled**
	- \circ $\Delta E = \Delta E(T)$: *T* is uncontrolled

Dead cone prediction in AA

