

Mandelstam Institute for Theoretical Physics MITP

Jet substructure

for in small systems
with JEWEL

Isobel Kolbé, Govert Nijs

University of the Witwatersrand (Wits) National Institute for Theoretical and Computational Sciences (NITheCS) Mandelstam Institute for Theoretical Physics (MITP) SA-CERN Collaboration

Thank you to Carlota Andres, Rithya Kunnawalkam-Elayavalli, Wilke van der Schee, and Martha Verweij for advice and illuminating conversations.

Isobel Kolbé (Wits)

Why R_{AA} is the worst (in small systems)

- Reliance on a reference system
- Steeply falling production spectrum
 - Survival bias
 - Sensitive to PDFs and nPDFs
- Sensitive to initial condition
 - Geometry
 - Momentum anisotropy
- Sensitive to jet fragmentation
- Supposed to quantify ΔE , but
 - $\circ \quad \Delta E \leftarrow L \leftarrow N_{coll}: uncontrolled$
 - $\circ \qquad \Delta \mathbf{E} = \Delta \mathbf{E}(\mathbf{T}) : \mathbf{T} \text{ is uncontrolled}$

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{dN_{AA}/dp_{\rm T}}{d\sigma_{pp}/dp_{\rm T}}$$

Isobel Kolbé (Wits)

Can we do something else?

Isobel Kolbé (Wits)

Beyond R_{AA}

(1) Train a BDT on all observables to distinguish quenched from unquenched

(2) cf single and pairs of observables

Beyond R_{AA}

(1) Train a BDT on all observables to distinguish quenched from unquenched

(2) cf single and pairs of observables

 $R_{q} = 0.96$ (Δρ_τ)₅₀ -0.97 0.81 Q₂₀³-0.960.810.73 Q⁰⁵₂-0.960.810.800.7 Q%7-0.960.830.820.800.7 Q10 -0.97 0.85 0.83 0.82 0.83 0.8 -0 970 970 960 960 960 960 960 96 rsp -0.970.970.970.970.970.970.970.980.91 -0.960.970.960.960.960.970.970.960.96 90.980.99<mark>0.98</mark>0.99 ysp -0.960.820.740.750.780.800.960.970.960.970.960.960.980. rz_{sD} – 0.980.98 0.99 τ_{2,1,SD} -0. 20.820.820.850.970.970.970.970.970.970.96 0.820.990.990.8 1.00 90.98 T3, SD T3.2.5D 0.980.91 R_{g, TD} 90.990.840.990.92<mark>0.7</mark>4 9<mark>0.98</mark>0.93<mark>0.82</mark>0.8 Rg, ktD $R_{g,zD} - C$ 0 95 9<mark>0.97</mark>0.990.960.950.960.95 960.990.960.960.970.980.95 50 950 950 950 980 980 980 980 99 11.00 1.00 1.000 980.980.98 0.980.9 KktD -0 1.001.001.000 980,940,860,920,970,960,980,8 K20 -0 80.900.980.920.910.930.970.97 0.940.91 nso-(0.960.970.970.960.970.960.990 $Z_a = I$ 80.87<mark>0.980.920.75</mark>0.85<mark>0.960.95</mark>0.980.890.920.7 0.940.960.950.960.960.980.930.940.920.92 0.93 Zq. TD -0. 3<mark>0.98</mark>0.920.87<mark>0.98</mark>0.960.970.980.910.920.830.920.8 $Z_{q,ktD} = 0$. 0.830.850.860.960.970.970.960.960.950.990 0.82<mark>0.98</mark>0.91<mark>0.75</mark>0.84<mark>0.960.950.98</mark>0.870.91<mark>0.74</mark>0.920.820.73 $Z_{g,zD} = 0$. 30.750.770.800.960.970.960. 960.960.98 2505 2507 2507 2507 2507 2507 Sp ã

Pairs of observables that are just as good as the full set

Isobel Kolbé (Wits)

SoftJet 2024 (Tokyo)

5

Beyond R_{AA}

(1) Train a BDT on all observables to distinguish quenched from unquenched

(2) cf single and pairs of observables

Hydro interface for JEWEL

gh repo clone isobelkolbe/jewel-2.4.0-2D

New jewel-2.4.0-hydro-2D:

- Built on jewel-2.4.0-simple
 - Similar use of temperature and velocity for scattering centers
 - Similarly separable from main jewel code.
- Can include any (2+1)D background with T and (u_x, u_y) information
- Jet production location from N_{coll} information
- Subtleties with density determination

$$n_{eff} = \frac{n_0}{\cosh \eta - \sinh \eta \cos \theta}$$

Isobel Kolbé (Wits)

Trajectum

• Utrecht / CERN / MIT

• Contains:

- Initial stage (Trento)
- pre-eq.
- Hydro
- Freeze-out
- Hadron phase
- Fast
- Bayesianized parameter lists

Ultra-preliminary results - groomed pT

Ultra-preliminary results - Jet Mass

Simple: Standard JEWEL medium.

Hydro: 1k JEWEL events each on 500 Trajectum profiles.

Hydro samples: 200k JEWEL events on each of 10 randomly chosen *Trajectum* profiles.

Ultra-preliminary results – R_{AA}

Simple: Standard JEWEL medium.

Hydro: 1k JEWEL events each on 500 Trajectum profiles.

Hydro samples: 200k JEWEL events on each of 10 randomly chosen *Trajectum* profiles.

All normalized to JEWEL vacuum.

• Really need ensemble

What (other) physics can we do with this?

- <u>Initial goal:</u> Explore new observables in a variety of collision geometries.
- Explore *any* medium effect on jets:
 - Time-delays
 - Flowing medium
- Realistic R_{AA} vs v_2 in AA (more work)

2112.04593

What does the modification of high- p_T partons look like in small systems?

What role do initial state fluctuations play on jet properties?

How do other environments affect jets?

Backups

Isobel Kolbé (Wits)

Need a space-time picture

Time reclustering: $d_{ij} = \min\left(p_{T,i}^{2p}, p_{T,j}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2} \xrightarrow{p=0.5} p_{T,i}\theta^2 \sim 0$

 au_{form}

radiation in the early stages

$R_{AA} \otimes v_2$ non-trivial even in AA

SoftJet 2024 (Tokyo)

temperature profile?

What is the pathlength dependence?

$$\langle \epsilon \rangle = L^{\beta}$$
$$\beta = 1.02^{+0.09}_{-0.06}$$

Caveat:

Centrality

Start by varying the pathlength

Isobel Kolbé (Wits)

Huss et.al. 2007.13758

Lighter ions

Isobel Kolbé (Wits)

SoftJet 2024 (Tokyo)

18

ATLAS: 2206.01138

Bierlich et.al. 1806.10820

No quenching?

ANGANTYR with string-shoving OFF

Caveat: 0-20% bin in pPb is quantitatively different to 0-5%

Small is not the only problem

 $\lambda_{mfp} \sim \frac{1}{\rho\sigma} \sim \frac{1}{g^2T}$

 $\mu_D \sim gT$

Smaller systems are hotter at the same multiplicity

Isobel Kolbé (Wits)

Single, massless, non-interacting, scalar field in a finite box

The dead cone

In-medium radiation fills the dead cone

a v

22

R_{AA}, v_2 , and Centrality

	PbPb data			pPb data				
N ^{offline} bin	(Centrality)	$\langle N_{\rm trk}^{\rm offline}$	$\langle N_{\rm trk}^{\rm corrected} \rangle$	Fraction	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{trk}^{correct}$	ed >	
	\pm RMS (%)	, un	, , ,				,	
[0,∞)				1.00	40	50 ± 2		
[0,20)	92±4	10	13 ± 1	0.31	10	12 ± 1		
[20, 30)	86 ± 4	24	30±1	0.14	25	30 ± 1		
[30, 40)	83 ± 4	34		0.12	35	42 ± 2		
[40, 50)	80 ± 4	44	0-50%	0.10	45	54 ± 2		
[50,60)	78±3	54	· · · · · · · · · · · · · · · · · · ·	0.09	54	66±3		
[60, 80)	75±3	69	87 ± 4	0.12	69	84±4	0-30%	
[80, 100)	72±3	89		0.07	89	108 ± 5		
[100, 120)	70±3	109	0-10%	0.03	109	132 ± 6		
[120, 150)	67±3	134		0.02	132	159 ± 7		
[150, 185]	64±3	167	210 ± 9	$4 imes 10^{-3}$	162	195±9		
[185, 220]	62±2	202	253 ± 11	$5 imes 10^{-4}$	196	236±10		
220,260)	59±2	239	299±13	6×10^{-5}	232	280±12		0.00(010/1
260,300)	57±2	279	350 ± 15	3×10^{-6}	271	328 ± 14	0-0	0.00631%b
300,350)	55±2	324	405 ± 18	1×10^{-7}	311	374±16		

Subtract low mult-data (match ATLAS)

Isobel Kolbé (Wits)

R_{AA}, v_2 , and Centrality (Alternative - ATLAS)

$egin{array}{c} \Sigma E_{\mathrm{T}}^{\mathrm{Pb}} \ \mathrm{range} \ \mathrm{[GeV]} \end{array}$	$\langle \Sigma E_{\mathrm{T}}^{\mathrm{Pb}} angle$ [GeV]	range in fraction of events [%]	$\langle N_{ m ch}^{ m rec} angle \ ({ m RMS})$
> 80	93.7	$0\!\!-\!\!1.9$	134(31)
55-80	04.8	1.9 - 9.1	102 (26)
40 - 55	46.7	9.1 - 20.0	80 (23)
25 - 40	31.9	20.0 - 39.3	60(20)
10 - 25	16.9	39.3 - 70.4	37(17)
< 10	4.9	70.4 - 100	16 (11)

R_{AA}, v_2 , and Centrality (Alternative - peripheral)

Correlated yield

Isobel Kolbé (Wits)

Why R_{AA} is not ideal for small systems

- Reliance on a reference system
- Steeply falling production spectrum
 - $\circ \quad \text{Sensitive only to large } \Delta E$
 - Sensitive to PDFs and nPDFs
 - Species-dependent
- Sensitive to initial condition
 - Geometry
 - **Momentum anisotropy**
- Sensitive to jet fragmentation
- Supposed to quantify ΔE , but
 - $\circ \quad \Delta E \leftarrow L \leftarrow N_{coll}: uncontrolled$
 - $\Delta E = \Delta E(T) : T$ is uncontrolled

Dai et.al.: 2205.14668

Dead cone prediction in AA

