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Radiation induced damage in silicon
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Bulk damage:

Incoming particle transfers a certain amount of energy
to atom

If the energy transferred to the atom is large than the
binding energy of a silicon atom (~190 eV) then the
atom can be displaced, moving it to an interstitial site
and leaving a vacancy — single point or cluster defects
Number of defects is proportional to the Non-lonizing
Energy Loss (NIEL) — depends on incoming particle
type and its energy

Surface damage:

Low energy X-rays can produce surface damage
affecting the SiO,/Si;N, layer

lonizing particles can produce charging up effects
affecting the internal fields inside the device

(M. Moll, Radiation damage in silicon particle detectors,
Ph.D. thesis, Hamburg U. (1999) and references there in)
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Radiation induced damage in Silicon: dark current increase
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Activation energy E_, = 0.605 eV is close to the middle

Measured after 80 min annealing at 60 °C of the silicon bandgap

A. Chilingarov, Temperature dependence of the current generated in Si
(M. Moll, Radiation damage in silicon particle detectors, bulk, Journal of Instrumentation 8 (10) P10003.
Ph.D. thesis, Hamburg U. (1999) and references there in)
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Radiation induced damage in Silicon: doping concentration change
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Figure 5.21: Dependence of N.;; on the accumulated 1 MeV neutron equivalent flu-
ence ¢, for standard and orygen enriched I'Z silicon irradiated with reactor neutrons
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Under hadron irradiation doping
concentration in silicon detectors
changes due to acceptor/donor
concentration change

(M. Moll, Radiation damage in silicon particle detectors,
Ph.D. thesis, Hamburg U. (1999) and references there in)
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Radiation induced damage in Silicon: dark current annealing
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of dark current annealing in
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Radiation damage effects in SiPMs
(X-rays and gammas)




“Early” SiPMs under Co-60 gamma ray irradiation

Matsubara and co-authors have irradiated a prototype
SiPM from Hamamatsu (Type No. T2K-11-100C) under bias
up to 240 Gy of 60-Co y-rays and measured the dark
current, dark-count rate, gain, and cross talk. Whereas gain
and cross talk did not significantly change with dose, large
dark count pulses and localized spots with leakage current
along the outer edge of the active region and the bias lines
were observed for about half an hour after irradiation for
doses above 200 Gy

T. Matsubara, H. Tanaka, K. Nitta, M. Kuze, Radiation damage of MPPC
by gamma-ray irradiation with Co-60, PoS PD07 (2007) 032.

Infrared camera pictures of a new sample and

the irradiated with 240 Gy dose. Infrared light It is worth mentioning that in recent SiPMs such kind of
is emitted due to heat produced by high damage is not observed

leakage current (red points).
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Reverse Current [A]

Effects of X-rays irradiation on recent SiPMs

(C. Xu, R. Klanner, E. Garutti, W.-L. Hellweg, NIM A762 (2014) 149)
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The effects of X-ray irradiation to doses of 0, 200 Gy, 20 kGy, 2 MGy, and 20 MGy investigated on the Hamamatsu siIic:on—photomuItipIier
(SiPM) S10362-11-050C and to doses up to 100 kGy on the recent FBK SiPMs. The SiPMs were irradiated without,'applied bias. From
current—voltage, capacitance/conductance-voltage, capacitance/conductance—frequency, pulse-shape, and pulse-area measurements,
the SiPM characteristics below and above breakdown voltage were determined. Up to a dose of 20 kGy the performénce of the SiPMs is
hardly affected by X-ray radiation damage. For doses of 2 and 20 MGy the SiPMs operate without any changelln gain, but with a
significant increase in dark count rate.

X-ray radiation can significantly change PDE of SiPMs due to damage of the SiO,/Silicon interface and SiPM protection window.
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Radiation damage effects in SiPMs
(hadrons)




SiPM radiation damage by hadrons

Relative response to LED pulse vs. exposure to neutrons
(Eeg~1 MeV) for different SiPMs measured at RT

Radiation may cause:

e Fatal SiPMs damage (SiPMs are broken and can’t
be used after certain absorbed dose).

e Dark current and dark count increase (silicon ...)
e Change of the gain and PDE vs. voltage
dependence (high SiPM cell occupancy due to high
induced dark carriers’ generation-recombination
rate and self-heating effects caused by high dark
current in irradiated SiPMs)

® Breakdown voltage increase, PDE, Gain
reduction due to donor/acceptor concentration
change

LED amplitude (normalized to 0 dose)

1.2

LED vs. Flux (R =3 kOhm, no bias correction, non-annealed)
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(Yu. Musienko, A. Heering, NDIP-2011, Lyon, France)

SiPMs with high cell density (faster cell recovery time and smaller dark currents) can operate up to 3*10'2 neutrons/cm?

even at room temperature (gain change is < 25%).

18/11/2024
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Dark current vs. exposure to neutrons (E,,~1 MeV) for different SiPMs

New Hamamatsu MPPCs (bias non-corrected, R, =3 kOhm)
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Thickness of the epi-layer for most of SiPMs is in the range of 1-2 um,

howeverd  ~ 4+ 50 um for different SiPMs. High electric field
effects (such as phonon assisted tunneling) play significant role in the

1E+11

1E+12

Neutron flux [n/cm?]

(Yu. Musienko, A. Heering, NDIP-2011, Lyon, France)

origin of SiPM’s dark noise.

18/11/2024

1E+13

High energy neutrons/protons produce silicon
defects which cause an increase in dark count and
leakage current in SiPMs:

|~ *DFVFEM*K,

o — dark current damage constant [A/cm];
@ — particle flux [1/cm?];

V — “effective” silicon volume [cm?]

M —SiPM gain

k — NIEL coefficient

O ~4*1017 A*cm after 80 min annealing at T=60
°C (measured at T=20 °C)

Damage produced by 40 neutrons (1 MeV) in 1 um
thick Si = 1 dark count/sec at 20 °C

V~S*Ge*d 4

S- area

G; - “effective” geometric factor
d. - “effective” thickness

Musienko, PD24 conference, 19-22 Nov 2024, Vancouver 13




18/11/2024

=30C)

Dark current /Dark Current (T

Dark current /Dark Current (T=30C)

Dependence of the SiPM dark current on the
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Trap-assisted tunneling effects

Hamamatsu $15408 25 um cell pitch SiPM, after 1E13 n/cm?, dVB=1V

(E.Garutti, Yu.Musienko, NIM A926 (2019) 69)

Low electric field (PIN)

The diffusion and generation currents have the following temperature

dependence [9]:
Eg
Idr‘ff x T3e 7, (1)

- (T=-35 °C + +25 °C)
I, o« T<¢ &r. 2)

gen

For the activation energy, E, a value of 0.605 eV is found by Chilin-
garov [10], which using the Shoc:kEley—Read—Hall (SRH) model corre-
sponds to a trap energy E, = E, + - = 45 meV from mid gap.

High electric field (APD&SiPM)

For electric fields of the order of 105 V/cm or higher Eq. (2) needs to
be corrected by a trap-assisted tunneling term, /,,,.,,. The correction
depends on the effective field strength, F,;, and modifies Eq. (2), as

Eﬂ
Tyeniar < (1 + D) TP 0T, 3)
)
where I = ﬁe 12 ) is the term defined by Hurkx [11], which

accounts for the effects of tunneling.

Idark vs. T (SiPM&PIN) — relative to Idark at -5 °C
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Results on heavily irradiated SiPMs



Breakdown voltage change with hadron irradiation

2.8 mm dia., 10 um cell pitch Hamamastu MPPCs irradiated up to KETEK SiPM irradiated with neutrons (S.Cerioli et. all, ICASiPM (2019))
2.2E14 n/cm?, (A.Heering et al., NIM A824 (2016) 111)
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VB increase is smaller for SiPMs with thinner epi layer (smaller VB)
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Dark Current [A]

Changes in dark current and signal response at high neutron fluxes

Can SiPM survive very high neutron fluxes expected at high luminosity LHC? Recent Hamamatsu SiPMs (9 mm?, 15, 20, 25, 30 um cell
pitch SiPMs developed for CMS BTL and HGCAL projects) were irradiated with reactor neutrons (2*¥10% n /cm? 1 MeV equivalent).

SiPMs were measured at T=-45 °C. TECs were used to stabilize the SiPMs temperature
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The authors found:

Increase of the dark current (up to ~1.6 mA for 30 um SiPM, at dVB=1 V)
Increase of VB: 1V for 20, 25, 30 um SiPMs and 2 V for 15 um SiPM

Drop of the signal amplitude (25% + 40 % depending on dVB and SiPM type)
Reduction of PDE (for 25 um cell SiPM: 15 % +25 % depending on dVB)
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(Yu. Musienko et al., article in preparation)

The main result is that SiPM survived this dose of irradiation and can be used as
photon detector! (see presentation of M. Wayne at this conference)

Musienko, PD24 conference, 19-22 Nov 2024, Vancouver
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Laser response of the CMS HE SiPM after irradiation with 5E13 n/cm?

Does irradiation change the SiPM signal shape?

Rioaqg = 16.7 Ohm, average of 100 waveforms

G analysersi === A analysersi
Rend & Filtering | Waveloems & Cursers | Histogeaen 8 Fitting | [ Pt Rend & Filte ivtogra #
Samples per wavefom: 501, timebase: M0gs Scope View Expart 100
Shom ] o
SmeethWidth  CakeRescals CalR
0 e .|| - Y A R, ' e 8 0
[ Exp Fit
. Py . Peak
Type Tpe
Valleys Valleys
Commktont e | e R cebtount g
o Ho
o !
an ount Save Al Count Save
W ¥ cages senech 20 300 S0n In n B ¥ edges search
EdgeSiope Hysteresia time CAPTILE T b Cursorn Edgesicpe  Hysteesis
Fal B [Feing
,,,,,,,, 8 wirvel atn -2796m
EdgeF [ B
- wavel 954n 437y
L cument Bl i Thess 2011m  |Leer
. valtage, ¥V in, Ohm currers, LR 43Em —
- -6t w 0 | | | Wk
rrrrrrrrrrrrrrrrrrrr
Offset g Cursors: | FullFarge | = Load 103880 | Offset|g

S$10943-4732, 15 micron pixels, no trenches similar to S12572-015C SiPM

* HE 2.8 mm dia., 15 cell pitch SiPMs

* Laser 405 nm, 25 psec FWHM

* Quartz fiber 2 m long

* Picoscope 6404D, BW=500 MHz, 5 Gs/sec
* Loads: 50 Ohm, 25 Ohm, 16.7 Ohm

(Yu. Musienko, A. Heering, A. Karneyeu, M. Wayne,
article in preparation)

The SiPM response remains unchanged after 5E13 n/cm? (irradiated at Ljubljana reactor)

18/11/2024
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Self-heating effects in irradiated SiPMs
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LED pulsed light was used to study amplitude to over-voltage
dependence of S12572-1015P SiPM irradiated with 5E13 n/cm?2.
Signal amplitude doesn’t increase with dVB due to SiPM self-
heating (PCB package with bad thermal conductivity).
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Self-heating effects in irradiated SiPMs
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M. Lucchini, Yu. Musienko, A. Heering, NIM A997 (2020) 164300

proposed a method (using intense illumination with a LED) to evaluate the heat
dissipation properties of different SiPM packages and the temperature stability of SiPMs
during operation under extremely high dark count rates (larger than 30 GHz).
Temperature variations as a function of time was tested for the three SiPM configurations
(PCB package, ceramic package, ceramic package + Cu plate)

SiPM temperature can increase by >19°C in case of ~105mW power dissipation and PCB package.
PCB package can provide better thermal conductivity with large number of copper filled vias.
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Annealing of radiation damage



Dark Current vs. Irradiation Time&Neutron Fluence

l4arc VS. Time, T=-30 °C, U=67.0 V (dVB=4.76 V)
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To study the dark current annealing, a HPK 1 mm2, 15 um cell pitch SiPM (HE/HB type) was irradiated under bias (U=67 V, dVB=4.76 V) in cold (T=-30
°C, Peltier thermoelectric cooler) at CERN CHARM irradiated facility up to 2.E12 n/cm? (1 MeV neutron equivalent) total fluence. The SiPM dark current

was monitored during irradiation.
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l4ark VS. Fluence, T=-30 °C, U=67.0 V (dVB=4.76 V)
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Dark Current annealing at T=-30 °C and 20 °C

-30°C -10°C 1 0°C  10°C 20°C
I 1 1
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IL | I
08 | ——

0.4
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0.2
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Time [days]

The SiPM was kept at T=-30 C after irradiation. During annealing we changed SiPM temperature using TEC integrated in the
SiPM package. This figure shows the relative change of dark current with time. The annealing of dark current accelerates with
increasing temperature.

~60% of dark current is annealed when the temperature changes from -30 °C to +20 °C
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Dark Current annealing at elevated temperature
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Annealing factor ~7.5 was achieved for 9 mm? S15408 25 um cell pitch SiPMs (16 channel BTL array) cell size SiPM irradiated with
2E14 n/cm? after 4 days of annealing at 120 °C (measured at T=-45 °C)
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Dark current annealing at very high temperature
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Tsang et. all (JINST 11 (12) P12002) performed 3
days annealing at +250 °C, using forward bias with
the SiPM current reaching 10 mA. A remarkable
effect of this high temperature annealing was
demonstrated: >20 fold reduction of the dark
current at room temperature. Single photo-
electron resolution was recovered after this
procedure for devices irradiated up to ® = 10'2
n*cm=2 with cooling them to about -50 °C.
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R. Preghenella et. all (NIM A1056 (2023) 168578) observed >30 fold reduction of
the dark current after 200 hours annealing at 150 °C (measured at T=-30 °C)
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Recent and future developments of rad. hard
SIPMs



Tip Avalanche Photodiode—A spherical-junction SiPM concept
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S. Vinogradov (NIM A1045 (2023) 167596) proposed a new
design of SiPM (produced by KETEK) with spherical p-n

junction, 15 um cell, =4 ns
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PDE vs. wavelength at dVB=5 V and T=21 °C
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J. Rdmer et. al (NIM A 1045 (2023) 167792) studied radiation damage of TAPD by neutrons

1011
106

10°

2"dbreakdown

4
10 107

103
10°

nerm / (a.u.)

DCR(1 + CN) / (Hz/mm?)

102 —= ®eq=0 Deq =0
—— ®eq=1x101cm2 —— ®gq=1x10 cm2
1 3
10 —— ®eq=1x10" cm~2 10 —— ®eq=1x101 cm2
109 —— O®eq=1x102cm™2 —— ®q=1x102 cm™2
-1 0 1 2 3 4 5 6 7 % 1 2 3 4 5 & 7 8 9
Overvoltage / (V) Overvoltage / (V)
No change in photocurrent vs. dVB dependence The dark count rate at 20 °C calculated
after 1E12 n/cm?. normalized to a detector area of 1 mm? for the

TAPD and the KETEK MP15 15 cell pitch
“classical” SiPM.

A factor of 10 smaller dark current compared to a “classical” KETEK SiPM of the same area and
cell pitch. This reduction is likely due to the smaller area of the avalanche region =» smaller trap
assisted tunnelling effects.
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FBK Backside llluminated SiPM

The next-generation of developments, currently being investigated at FBK, is building a backside-illuminated,
NUV-sensitive SiPM. Several technological challenges should be overcome.

Clear separation between charge collection and multiplication regions. " "sensor layer (Custom) } .
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Development Risks:

 (Uniform) entrance window on the clectrons Collection Region e
backside, ideal for enhanced optical stack m - Charge collection time jitter
(VUV sensitivity, nanophotonics) Trench ™ | o ———— » Low Gain - SPTR?

« Local electronics: ultra fast and possibly Back Side - Effectiveness of the new
low-power. entrance window

Light Entrance

New BSI-SiPM structure

Radiation hardness:
» The SiPM area sensitive to radiation damage, is much smaller than the light sensitive area
- - Assumption: the main source of DCR is field-enhanced generation (or tunneling).

Alberto Gola - FBK SiPM roadmap - Photodetection with semiconductors - LPSC meeting 03/06/2024
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Instead of a conclusion: Approaches to develop radiation harder SiPMs

s Dark noise reduction

Optimization of the electric field profile (especially for smaller cells) to obtain a uniform electric field across the cell (no regions with higher or lower
electric field values). Reducing the maximum electric field (trap-assisted tunnelling!), while keeping the depletion layer thickness thin to reduce the
generation volume. TAPD or back-side illuminated SiPM structure are very promising for reducing high electric field effects.

+ Cell occupancy reduction

Cell occupancy can be reduced developing SiPMs with small cell size and small recovery time

«* Power consumption reduction

Reduction of SiPM gain (smaller cell size, smaller cell capacitance) and dark current generation

+* Breakdown voltage increase minimization

It can be reduced by reducing the thickness of the depletion region (A contradiction arises with the possibility of reducing the electric field.)
+* Reduction of the damage in SiPM entrance window

Optimization of the SiO,/S;N,/Si interface to reduce light losses in an entrance window and avoid trapping in front SiPM layer
+* Optimization of SiPM package

Package of SiPM has to allow:

v" SiPM operation in wide range of temperatures (-200 °C + 200 °C);

SiPM protective layer/epoxy must be radiation resistant

Easy heat removal (to reduce SiPM self-heating)

Integrated temperature sensor (can be integrated on the same chip as SiPM)

AN N N

Integrated heater (for faster and easy dark current annealing)?
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