

Current status and development of of Digital CMOS SiPM

for scintillation-based detectors towards All-Digital sensors

Prof. Dr. Nicola D'Ascenzo November 20th 2024

Outline

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Outline

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

21.11.2024

PET in agriculture

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Quantify plants metabolism for the precise administration of Nitrogen fertilizers to reduce soil deterioration

Low energy gamma ray detectors, requiring spatial resolution < 0.5 mm and timing resolution < 100 ps

21.11.2024

The detector concept

Timing accuracy at 100 ps level and impact localization at 1 mm level are necessary in scintillation/sensor detectors

Space-time information of the scintillation optical photons enables new digital signal processing approaches

21.11.2024

SiPM target goals

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

The target parameters to be achieved in order to guarantee a proper readout of scintillation light

Outline

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

A constructive-disruptive approach to new scintillator-based radiation detectors Application requirements and sensor concept Real-time portable Positron Emission Tomography for agriculture sets a high demanding standard to high spatial resolution and fast timing digital sensors A CMOS process for a performant analog SiPM The development of a performing digital SiPM is based on a solid CMOS process allowing a performant analog SiPM A conservative digital circuit design

New Digital Signal processing approaches

21.11.2024

PDE: shallow junction

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

The path towards high PDE at the 420 nm spectral region is achieved by forming a shallow p/n junction

N. D'Ascenzo, IEEE Electron Device Letters, 2019

N. D'Ascenzo, submitted to IEEE Trans. Elec. Dev., 2024

21.11.2024

PDE

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Several layout variations confirmed the correct dependence of the PDE on the excess bias voltages

N. D'Ascenzo, submitted to IEEE Trans. Elec. Dev. , 2024

21.11.2024

PDE

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

No significant trend of the PDE over the temperature is observed

N. D'Ascenzo, submitted to IEEE Trans. Elec. Dev. , 2024

21.11.2024

Noise characterization

The STI fabrication process causes a rise in the density of deep-level carrier generation centers at its interface

Dark count rate

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Temperature and voltage dependence of the dark count rate as expected

N. D'Ascenzo, submitted to IEEE Trans. Elec. Dev. , 2024

PD24 - 6th International Workshop on New Photodetectors

Single Photon Timing

SiPM timing properties depends on the electric field strength and on the p/n junction width

Approximatively 75 ps (FWHM) at 110 nm CMOS node

21.11.2024

Application perspectives

Energy and time resolution of the devices are consistent with the requirements of PET

Overview of parameters

The obtained SiPM is competitive with commercial devices

N. D'Ascenzo, Chinese Optics Letters, 2024

Being obtained at a CMOS node, it is compatible with electronics on chip

21.11.2024

Outline

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Sensor design

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

- **Pixel size:** 50x50 μm²
- Array size: 48x64 (3072)
- **Die size:** 6.84x9.7 mm²
- Frame rate: 4 MHz

Sensor design

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

The signal pulse train – a "scintillation light camera"

					Tìr	ne	+	Scintillation pulse duration																	
1 st Cell	Reset	Counting					OFF	Read	Reset		Counting						Read	Reset		Counting					
2 nd Cell	Read	Reset			Countir	ng		OFF	Read	Reset	Reset Counting						OFF	Read	Reset	set Counting			ıg		
3 rd Cell	OFF	Read	Reset Counting						OFF	Read	Reset	Counting						OFF	Read	Reset		Cou			
4 th Cell	Coun ting	OFF	Read	Reset		Co	ounting			OFF	Read	Reset	Cour			nting	g OFF			Read	Reset	t Counting			
5 th Cell	Cour	Counting		Read	Reset		untin	3		OFF	Read	Reset	t		Co	ounting		OFF			Reset Counting		ing		
:	:	:	:			:	÷	:	:	:	:			: :		•	:								
N th Cell			Count	nting OFF			Read	Reset			Counting					Read	Reset		Counting				OFF	Read	

Important – note that the arrival time information is not yet included in this version of the sensor

21.11.2024

Dark count rate

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

The dark count rate increases with temperature. The implementation of transistors slightly increases DCR

21.11.2024

PD24 - 6th International Workshop on New Photodetectors

19

Scintillator readout

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Read out the scintillation light produced by the detection of 511 keV optical photons in a 4x4 mm² LySO crystal

21.11.2024

Scintillator readout

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Visualize the scintillation light produced by the detection of 511 keV optical photons in a 4x4 mm² LySO crystal

Scintillator readout

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

PD24 - 6th International Workshop on New Photodetectors

Outline

21.11.2024

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

Multi-threshold SiPM

Multiple Analog-to-Digital Conversions Limit Current SiPM's Performance

MT SiPM design

A new concept – sensors under production being delivered in November 2024

Real-time digitization at the signal source addresses the challenges of digital readout.

SiPM Receives Photons

Digitize from the Signal Source, Generating Multiple Digital Response Signals

- D Photon Counting Threshold Model Based on Prior Knowledge
- Digitize "count/time pair" signals to reconstruct photon timing information.
- □ Achieve direct real-time digitization of SiPM output signals to ensure signal integrity.

Direct real-time Digitization

Significant leap in photodetection performance

- Higher detection efficiency
- Extremely low dark count rate
- Faster time resolution
- Higher readout speed

MT SiPM design

A new concept – sensors under production being delivered in November 2024

Real-time digitization at the signal source addresses the challenges of digital readout.

SiPM Receives Photons

Digitize from the Signal Source, Generating Multiple Digital Response Signals

- D Photon Counting Threshold Model Based on Prior Knowledge
- Digitize "count/time pair" signals to reconstruct photon timing information.
- □ Achieve direct real-time digitization of SiPM output signals to ensure signal integrity.

Direct real-time Digitization

Significant leap in photodetection performance

- Higher detection efficiency
- Extremely low dark count rate
- Faster time resolution
- Higher readout speed

MT SiPM design

智能探测与成像实验室 Intelligent Detection and Imaging Laboratory

A PET system based on this chip will be available in 2025

21.11.2024

- The high time and spatial resolution required in time dynamic agricultural PET necessitates the development of new digital CMOS SiPM devices
- The digital CMOS SiPMs will have a broad application to scintillator-based sensors
- Scintillator readout with digital SiPM devices will reveal unexplored possibilities in single photon digital signal processing

Thankyou!!