Study of After-pulse of Fast Timing MCP-PMT and Its Performance in Magnetic Fields

Lingyue Chen, Lishuang Ma, Qi Wu Tutor: Sen Qian 2024.11.21

Outline

1. After-pulse measurement of different types of PMTs

- 1.0 The PMT and the Afterpulse
- 1.1 Afterpulse of 20-inch LPMT
- 1.2 Afterpulse of FPMT
- 2. Study on Performance of FPMT in Magnetic Fields
 - 2.1 Changes in Gain of FPMT in Magnetic Fields
 - 2.2 Changes in Timing Performance of FPMT in Magnetic Fields

1.0 The PMTs and the Afterpulse----(1) LPMT

Totally 20000 20" PMTs were used for JUNO, including both Dynode PMTs and MCP-PMTs.

➤ The 20-inch Dynode PMT

➤ The 20-inch MCP-PMT

1.0 The PMTs and the Afterpulse----(2) FPMT

Performance of the Fast-timing MCP-PMT:

High Gain: >10⁶ Small Size: Diameter=50mm

Fast Signal: Rise time < 1ns

TTS@SPE: ~30ps

1.0 The PMTs and the Afterpulse----(3) Afterpulse

Process of electrons back scattering and residual gas ionization

5

After-pulse: spurious pulses occurring in a PMT after the initial pulse.

- Similar to actual signals, can contribute to PMT noise and are detrimental to applications requiring low noise levels.
- Caused by ionized residual gases or by back-scattered electrons
- Use After-Pulse Rate (APR) to evaluate the level of after-pulses in a PMT:

$$APR = \frac{N_{After-pulse}}{N_{Main-pulse} \times Q_{Main-pulse}}$$

1.1 After-pulse of 20 inch PMTs

Tested PMTs: 20-inch HQE-MCP-PMT for JUNO, Dynode-PMT R12860 **Testing system:**

Dynode-PMT Average afterpulse charge: 1.15PE APR=7.71%

Light source: LED

DAQ: DT5751(1G/Hz sampling rate, 200M Hz bandwidth)

HQE-MCP-PMT Average afterpulse charge: 3.6PE APR=1.37%

Ref: NIMA 1003 (2021) 165351

After-pulses caused by ionized residual gases:

$$\begin{cases} V = V_p \frac{s}{d} \\ ZeV_s = \frac{1}{2}mv^2 \\ T_{delay} = \int_s^0 \frac{ds}{v} \end{cases}$$

- The afterpulse of PMT is related to the type of charged particles and the structure of PMT.
- Due to the small size of FPMT, the delay time of afterpulses are very close to the main pulses:
 - The after-pulses caused by back-scattered electrons often mix with the main peak and do not generate additional noise.
 - The after-pulses caused by ionized residual gases reach within 500ns after the main pulses.

Performance of FPMTs:

- Fast timing performance
- Small size
- High amplitude at SPE
- Good linearity

Testing system:

- High sampling rate DAQ system
- Relatively small time window
- Low light intensity

SA-FPMT

Number	HV/V	Gain	Peak@SPE	RT	FT	FWHM
photek210	-4300V	8.5E5	33.5mV	132.8ps	318.9ps	207.3ps
SA-FPMT	-2300V	7.3E6	115.7mV	228.3ps	564.6ps	330.5ps

Photek210 Average charge: 1.9PE APR=0.11%

Ref: Lingyue Chen et al 2024 JINST 19 T10004

11

Charge [PE]

SA-FPMT Average charge: 1.3PE APR=0.80%

The structure of MA-FPMT was adjusted to achieve better timing performance

MA-FPMT V4.0

MA-FPMT V6.0

Number	HV/V	Gain	Peak@SPE	RT	FT	FWHM
MA-FPMT V4.0	-1725	3.1E6	39.7mV	383ps	979.9ps	729.2ps
MA-FPMT V6.0	-1370V	5.6E6	73.7mV	303.9ps	473.6ps	518.1ps

The new version of the MA-FPMT has improved time performance and the afterpulse ratio (APR) is maintained below 1%.

1.3 Summary

• The small size of FPMT reduces the flight time of residual gas particles, thereby shortening the delay time;

• The small size of FPMT results in less residual gas inside the PMT, which can achieve lower afterpulse rates.

2 FPMTs in magnetic field

To achieve better timing performance, the Plate-Anode FPMT (PA-FPMT) was optimized to

Conical-Anode FPMT (CA-FPMT)

Ref: NIMA 1041 (2022) 167333

2 FPMTs in magnetic field

Tested PMTs:

Testing system:

Testing method:

- FPMTs were placed into a superconducting magnet to test the performance changes under different magnetic field strengths.
- Altering the angle between the FPMT and the magnetic field to test the impact of magnetic field angles on the

2.1 Plate-anode FPMT in magnetic field

- The experiment was conducted under multi-photon mode
- Great magnetic field tolerance of Plate-anode FPMT: the magnetic field strength where the pulse height decreases to 1/100 of the original large-signal reaches 5T at 0° and 1.85T at 90°
- Time resolution does not depend on magnetic field strength under fixed conditions

2.2 Conical-anode FPMT in magnetic field

Performance of CA-FPMT:

✓ Fast timing performance: ~200ps RT

Single-photon detection in magnetic field

✓ High single-photon amplitute: ~70mV

- Strong resistance to magnetic fields: single-photon detection capibility in strong magnetic field
- The effect of the magnetic field depends on the angle.

2.2 Conical-anode FPMT in magnetic field

- Time resolution does not depend on magnetic field strength under fixed conditions: Changing the magnetic field strength and angle does not alter the TTS, which is consistent with simulation results.
- When the magnetic field strength is high, the gain of the FPMT is low, resulting in small signal amplitudes and increased interference from baseline noise on the TTS.

Ref: L. Li et al 2020 JINST 15 C03048

2.3 Summary

- The conical anode greatly optimized the timing performance of FPMT and allows FPMT to conduct single photon tests in strong magnetic fields, demonstrating stronger magnetic field resistance than PA-FPMT.
- Time resolution does not depend on magnetic field strength under fixed conditions

Thanks!