

### **R&D of MCP-PMTs**

### **Ping Chen**

chenping1@opt.ac.cn

Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences (XIOPM-CAS)

21/11/2024

## **XIOPM MCP-PMTs**



#### 



XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS CHINESE ACADEMY OF SCIENCES

- Participated in the development of 20-inch MCP-PMT and 3 inch dynode-PMT for JUNO from 2012-2016
- Developed Gated MCP-PMT for DCI laser fusion experiment
- Developed MCP-PMT with high current output
- Developing Long-life multi-anode MCP-PMT for STCF





20 inch MCP-PMT



Gated MCP-PMT

Large current MCP-PMT



Long-life MCP-maPMT<sub>2</sub>

# Super Tam Charm Facility (STCF) in China





- Potential for upgrade to increase luminosity and realize polarized beam
- Site: 1 km<sup>2</sup>, Hefei's suburban "Future Big Science City"

# **STCF PID (DTOF)**





### **MCP-PMT requirements**

- 4x4 anodes
- Gain > 1E6
- TTS < 100 ps

. . . . . .

- QE > 20%
- Lifetime > ten years (IAC > 10C/cm2)
- High rate capability
  - Image: Side View
     Side View
     Front View

DTOF: DIRC-like TOF

# microchannel plate



#### Conventional MCP

- Made of lead glass
- Collection efficiency ~60%
- Gain from lead glass
- Maximum SEE yield  $\sim$ 3



#### □ ALD-MCP based on lead glass □ ALD-MCP based on borosilicate

nichrome

glass wall

high SEY film

- Coating Al2O3/MgO on the lead glass MCP input surface and channel
- Maximum SEE yield over 4
- Gain mainly from ALD-layer
- Collection efficiency improved to ~100%
- Lifetime extended

photoelectrons

secondary

electrons

MCP channel

### glass

- Lead free
- ALD coating resistive layer and emissive layer
- Gain resulted from ALD-Layer
- Maximum SEE over 4
- Lifetime extended







A. Lehmann et al., GSI scientific report 2022D01:10.15120/GS1-2023-00462



Gain







### Factors affecting the lifetime of MCP-PMT?

### ALD layer thickness and scrubbing amount

- MCPs with and without ALD layer
- ALD layer of 1 nm, 4.5 nm, 6nm thickness
- MCP scrubbed amount of 0.43~0.75 uA-h/cm<sup>2</sup>
- Operated at gain of 5e5~1e6
- Light source
  - LED driven by a pulse generator
  - 10 ns pulse width
  - 405 nm wavelength



$$C = \sum \overline{q} \cdot t \cdot f$$





### ALD film thickness effect

Lifetime@ 6 nm > 4.5 nm > 1nm > none

### Scrubbing amount effect

1.0

Lifetime@ 0.75 uA-h/cm<sup>2</sup> > 0.52 uA-h/cm<sup>2</sup> > 0.43 uA-h/cm<sup>2</sup>

### IAC over 11 C/cm2



Table 2. IAC at 50% anode output degradation for the MCP-PMTs.

| ID          | Thickness of the ALD-layer (nm) | Electron scrubbing dosage $(\mu \mathbf{A} \cdot \mathbf{h}/\mathbf{cm}^2)$ | IAC at $50\%$ degradation (mC/cm <sup>2</sup> ) |
|-------------|---------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|
| 25-221231   | 1                               | 0.43                                                                        | 117                                             |
| 25 - 230630 | None                            | 0.43                                                                        | 26                                              |
| 25 - 230722 | 1                               | 0.52                                                                        | 230                                             |
| 25 - 230727 | 1                               | 0.75                                                                        | 373                                             |
| 25 - 230825 | 1                               | 0.75                                                                        | 373                                             |
| 25 - 231109 | 4.5                             | 0.75                                                                        | 8800                                            |
| 25 - 231127 | 6                               | 0.75                                                                        | > 11,000                                        |
|             |                                 |                                                                             |                                                 |





### Performances before and after lifetime tests

# 25-231127 with IAC over 11 C/cm2

#### none degradation on photocathode and MCP





#### Performances before and after lifetime tests

# 25-221231 \cdot # 25-230630 \cdot # 25-230722 with IACs less than 0.56C/cm2

- Degradations on photocathode and MCP
- QE decreases more at longer wavelengths

| Table 2. | IAC at | 50% anode | output | degradation | for | the | MCP- | PMTs. |
|----------|--------|-----------|--------|-------------|-----|-----|------|-------|
|----------|--------|-----------|--------|-------------|-----|-----|------|-------|

| ID          | Thickness of the ALD-layer (nm) | Electron scrubbing dosage $(\mu A \cdot h/cm^2)$ | IAC at $50\%$ degradation (mC/cm <sup>2</sup> ) |
|-------------|---------------------------------|--------------------------------------------------|-------------------------------------------------|
| 25-221231   | 1                               | 0.43                                             | 117                                             |
| 25-230630   | None                            | 0.43                                             | 26                                              |
| 25-230722   | 1                               | 0.52                                             | 230                                             |
| 25 - 230727 | 1                               | 0.75                                             | 373                                             |
| 25 - 230825 | 1                               | 0.75                                             | 373                                             |
| 25 - 231109 | 4.5                             | 0.75                                             | 8800                                            |
| 25 - 231127 | 6                               | 0.75                                             | > 11,000                                        |



# **Rate capability**



#### measurement setup

- Single-anode MCP-PMTs
- LD driven by a pulse generator
- 10 ns pulse width
- ~3500 photons/cm2 /pulse







### ALD film effect

- MCP-PMTs with different thickness of ALD film operated at 1E5 gain
- illuminated by LD at rates of 10 Hz  $\sim$  500 kHz  $\sim$  10 Hz for 84 seconds to be saturated



### Illumination rate effect

- The greater the degree of saturation, the slower the recovery
- Super linearity is worse at higher rate for none-ALD MCP





### **Super linearity for none-ALD MCP**

#### Super linearity is worse for stronger illumination



400ns,1.4V

800ns,1.4V











### **Saturation duration effect**

- The longer the saturation duration, the slower the recovery.
- When the saturation duration exceeds a certain value (e.g. 42s), the recovery behavior no longer changes.



### Supply voltage effect

- Higher supply voltage seems better for recovery for the ALD-MCP
- Super linearity can be less for higher HV





# Magnetic fields effects



### How magnetic fields decrease gain

Electron trajectories in the MCP channel under the magnetic fields are simulated with CST program.

- Electrons move in a spiral under the influence of a magnetic field.
- This causes the electrons to be accelerated over a shorter distance.
- Reduction in the energy of electrons hitting the microchannel plate.



# **Magnetic fields effects**



#### Reduced number of secondary electrons produced due to lower impact energy



# Magnetic fields effects



- The number of electron collisions in the microchannel increases and then decreases.
- Gain is the result of the combined effect of the number of collisions and collision energy.



# **Gating function**



### MCP-PMT with gating function is developed to detect a weak neutron signal in

### the presence of strong gamma noise.

A gating electrode was incorporated between the cathode and the microchannel plate to control the voltage between the cathode and the gating electrode.









# Thank you for your attention !