

Test beam performance of a novel compact RICH detector with timing capabilities for the future ALICE 3 PID system at HL-LHC

M. Nicola Mazziotta on behalf of the ALICE 3 RICH working group

mazziotta@ba.infn.it

The 6th International Workshop on new Photon-Detectors (PD24)

Nov 19 – 22, 2024

Harbour Centre, Vancouver (BC), Canada

- ALICE 3 RICH layout proposal
- Beam test campaign at CERN PS@T10 in 2023 and 2024
 - We used a slightly different set-up but with different FE and read-out boards
 - Hereinafter we use "2023" and "2024" to refer to the two tests
- Results:
 - Cherenkov angle resolution
 - Timing resolution
- Outlook

ALICE 3 proximity-focusing RICH detector

• PID goals

- e/π separation in the *p* range 0.5 2 GeV/*c*
- π/K separation in the *p* range 2 10 GeV/*c*
- K/p separation in the *p* range 4 16 GeV/*c*
- Design concept: proximity-focusing geometry
 - Aerogel radiator tiles
 - n = 1.03, thickness = 2 cm
 - Transmission length > 6-7 cm at 400 nm
 - Photon detector based on SiPMs
 - Pixel size of 2x2 mm²
 - PDE > 40% at 400 nm
 - BoL DCR < 50 kHz/mm² at RT
 - Expected NIEL of about 10¹² MeV neq /cm²
 - Fast front-end with SPTR < 100 ps
- R&D ongoing with on-the-shelf components
 - Hydrophobic aerogel from Aerogel Factory & co.
 - HPK SiPM S13361-* (+ thin quartz window for Cherenkov based charged track timing and better pattern recognition)
 - Petiroc 2A and Radioroc 2 Omega/Weeroc FEs + CERN pTDC

Projective geometry: modules oriented towards nominal collision vertex 24 sectors x 36 modules, sensor area \approx 30.7 m², total N channels \approx 7M

2023 beam test set-up@T10

Particle timing (M1): S13361-3075 array With 1 mm of SiO2

Ring: 8 HPK S13552 128 ch. arrays of 0.23x1.625 mm² strips, 32 ch read-out 4- ORed strips

M0:

- S13361-1350 with ٠ 2 mm of SiO_2
- S13361-3075 with ٠ 1 mm of SiO_2
- S13361-3075 with ٠ 1 mm of MgF₂

Nicola M. - PD24 - Nov 19-22, 2024

2023 - DAQ and Front-End Board (FEB)

SiPM Bias Module:

- SiPM bias voltage regulation up to 80 V

Four FFBs:

- Two FEBs for the ring read-out
- One FEB for the central • matrices
- One FFB for the 2 X-Y fiber tracker

Boards developed in Bari for a fiber tracker M.N. Mazziotta et al "A light tracker based on scintillating fibers with SiPM readout", NIMA 1039 (2022) 167040 https://doi.org/10.1016/j.nima.2022.167040

2024 Beam test set-up@T10

2024 RICH set-up

- SiPM RICH camera with a feedthrough board (SiPM signals, Peltier bias and environmental sensor signals)
 - Flushed with Argon or CO₂
- Central array: HPK SiPM S13361-3050AE-08 with 3 mm pitch and 1 mm thick quartz window (M2)
- Ring array: HPK SiPM S13361-2050AE-08 matrices
- Aerogel radiator:
 - Single tile 2 cm thick with n=1.03 (single layer)
 - Focusing aerogel tile with 1 cm n=1.030 (upstream) + 1 cm n=1.033 (downstream) (two layers aerogel)

2024 - Timing set-up

• Two Hamamatsu SiPM S13361-2050AE-08 arrays (M0 and M1) with 2 mm pitch and 1 mm thick quartz window to produce a cluster of Cherenkov photons

2024 - Front-end and DAQ boards

- RICH and timing systems
 - Custom board based on the Radioroc 2 FE ASIC with picoTDC (LSB \approx 3 ps) and read-out by MOSAIC boards
 - picoTDC in multihit configuration with ToA and ToT
- Fiber tracker modules:
 - Custom boards based on the PETIROC2A FE ASICs with TDC (LSB \approx 37 ps) and ADC and FPGA on board
 - As beam test in 2023
 - Beam particle trigger and tracking

Radioroc2+pTDC board (in collaboration with Weeroc) + MOSAIC

2024 - Radioroc 2 and picoTDC

- Radioroc 2 Weeroc
 - ToT proportional to the number of photoelectrons (P.E.)
 - Threshold at single P.E. level
- picoTDC CERN
 - ToA LSB \approx 3.05 ps
 - ToT LSB \approx 195 ps
 - Acquisition window of 200 ns

- A good timing-particle match helps aerogel pattern recognition by allowing us to discard uncorrelated hits due to the SiPM DCR
 - Crucial for long term operation in ALICE 3, with the DCR increasing with the radiation
- First, we consider the time differences between the SiPM arrays (M0, M1 and M2) with thin window (Č radiator in front) to study the timing performance of the system
 - All time offsets removed as well (including the time-of-flight)
- Then, we consider the time difference between the RING arrays and the central matrix to remove the dark counts hit in the signal region
 - A Č photons particle hit arrival time within a narrow interval, i.e. +/- 5 ns

Cherenkov angle reconstruction method

- All hits in the ring SiPM assumed as candidate Cherenkov photons
 - Emission position in the middle of the aerogel tile by means of particle track parameters
- Cherenkov angle reconstruction
 - Analytical backpropagation:
 - Pixel hit ↔ Radiator by including Snell's law (at the areogel-argon surface)
- Angle resolution
 - Data fitted with $Gaus(\pi)$ (+ Gaus(p)) + background template
 - Background due to random coincidences, dark count rate hits, optical cross-talk, wrong tracking, ...
 - The background hits template looking ToA values outside the signal region

2023 - M0 and M1 performance with 10 GeV/c pions

2023 - Time resolution with/without window

- Selecting tracks in fiducial area requiring hits both in the two tracker planes and in the two central arrays
- Including time walk and channel by channel offset corrections and subtracting the nominal Time-of-Flight offset at the actual beam momentum

Istituto Nazionale di Fisica Nucleare Sezione di Bari

2024 - time resolution with maximum charge pixels

- Selecting tracks in fiducial area with M0 max-ToT > 20 ns, M1 max-ToT > 20 ns and M2 max-ToT > 40 ns
- Comparing results both with and without ToT-based time walk and channel by channel offset correction

2023: Cherenkov angle and timing effects

• Excellent background suppression achieved using timing information

Nicola M. - PD24 - Nov 19-22, 2024

2023 Angular resolution - signal hits within a ±5 ns

- Including kaons in the fit the pion resolution is recovered
 - The kaon fraction is compatible with the T10 particle beam composition at 8 GeV/c

2024: Cherenkov angle and timing effects

• Angular resolution of about 4.3 mrad as expected with 2x2 mm² pixel size

2024 - Angular resolution 8 GeV/c positive pions+protons

- Including kaons in the fit the pion resolution is recovered
 - The kaon fraction is compatible with the T10 particle beam composition at 8 GeV/c

- Pion and proton Cherenkov <u>single photon angle resolution</u> of about 4-5 mrad in 8 - 10 GeV/c beam momenta
 - 2 cm aerogel with n=1.03 and a proximity gap of about 23 cm
 - SiPM pixel pitch of 2 mm
 - Background suppression achieved using timing information
- The overall (electronic + SiPM) single pixel timing resolution of about 50 ps (sigma) / $\sqrt{2}$ or better with 1 mm of quartz radiator
- Towards ALICE 3 RICH
 - Compact SiPM + electronic layout, i.e. vertical integration with cooling (interposer)
 - Dedicated rad-hard SiPM and CMOS SPAD sensors
 - Dedicated front-end ASICs
 - Currently we are investigating to use the ALCOR chip developed by INFN Torino
 - Read-out based on the LpGBT ASIC and VTRX+ optical links
 - No local FPGAs due to the high radiation environment

2023 Hit maps

2024 BT Hits map

2023 - RICH set-up (3)

- Upstream 8x8 SiPM matrix (M0)
 - S13361-1350 1.3x1.3 mm² pixel with 2 mm of SiO2 and 100 um of Epoxy resin
 - The radiator was glued at CERN
 - S13361-3075 3x3 mm² pixel with 1 mm of SiO2
 - The radiator was glued by HPK
 - S13361-3075 3x3 mm² pixel with 1 mm of MgF2
 - The radiator was glued by HPK
 - S13361-3075 3x3 mm² pixel with 100 um Epoxy resin

- Downstream S13361-3075 8x8 SiPM matrix 3x3 mm² pixel (M1)
 - The radiator was glued by HPK
- Eight SiPM arrays for rings, HPK S13552: 128 strip with 250 μm of pith (active area of 0.23x1.625 mm²)
 - 32 read-out channels 4 ORed strips with 1 mm of pitch

2023 - Beam spot on matrices and trackers

Upstream and downstream -0.5 SiPM matrices -1.0

V [cm] y [cm] .5 / pixel ₀₀₆ 1.0 1.0 700 Stunoo 0.5 0.5 1348 500.X Matrix 0.0 0.0 -0.5 -0.5 000 200 100 100 100 -1.0 -1.5 -1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 y [cm] pixel 1.0 120 DI 0.5 100 tracker 0.0 0.0 80 -0.5 -0.5 60 Upstream -1.0 -1.0 20 -1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 x [cm] x [cm])24 - Nov 1!

Tracker fiducial area for particle signal in both matrices

×10³

2.5

Downstream matrix counts / pixel

.5

0.5

pixe 140

120 not 100

80

60

40

20

Downstream tracker

Upstream and downstream X-Y Fiber trackers

store difference alice 3 upgrade

ALICE 3 motivation and concept

- ALICE main goal: access the dynamics of the strongly interacting matter produced in heavy-ion collisions
- **Fundamental questions will remain open** after LHC Run 4, demanding for a next-generation experiment
- Letter of Intent for ALICE 3 submitted in March 2022
 <u>ALICE CERN-LHCC-2022-009</u>
- Scoping document submission by March-April 2024

Processes	Observables				
Early stages	Dilepton and photon production and flow				
Diffusion	Heavy-flavour correlations and flow				
Hadronization	Multi-charm baryons, quarkonia				
	Pointing resolution: \approx 10 μm at 200 MeV/c				
Detector	Tracking relative p_T resolution: \approx 1-2 %				
requirements	Extensive identification of e, μ , π , K, p, γ				
	Large pseudorapidity coverage: $ \eta < 4$				

SECTICE 3 barrel RICH motivation

ALICE 3 charged PID systems

- **Time-Of-Flight**: iTOF, oTOF, fTOF
- **Ring-Imaging Cherenkov**: bRICH, fRICH
- EM Calorimeter: Barrel + forward ECAL
- Muon Identifier Detector: Barrel MID

Let's focus on the bRICH

bRICH motivation

- Extend charged PID beyond the TOF limits
 - π/e in the p range 0.5 2.0 GeV/c
 - K/ π in the p range 2.0 10.0 GeV/c
 - p/K in the p range 4.0 16.0 GeV/c
- → Achieved using aerogel radiator with n \approx 1.03 + requiring angular resolution $\sigma_{\theta_{ch}} \approx$ 1.5 mrad

Aerogel radiator (n=1.03, L = 2 cm)

- Lattice of SiO₂ grains filled with trapped air
- Tunable index in the range 1.006-1.250
- Transmittance dominated by Rayleigh scattering
 - Transparent in the visible, opaque in the UV

SiPM-based photodetector

- Sensors must be sensitive to visible light
- Operation in magnetic field
- Granularity from 3x3 to 1x1 mm²
- Simulations: HPK 13360-3050CS SiPMs

A	erogel n	βth	Momentum threshold [GeV/c]					
			е	μ	π	К	р	
	1.01	0.99009901	0.0036	0.7453	0.9845	3.4821	6.6181	
	1.02	0.98039216	0.0025	0.5257	0.6944	2.4561	4.6681	
	1.03	0.97087379	0.0021	0.4281	0.5656	2.0005	3.8021	
	1.04	0.96153846	0.0018	0.3699	0.4886	1.7282	3.2846	
	1.05	0.95238095	0.0016	0.3300	0.4359	1.5420	2.9307	

400

300

200

500 600 700

Wavelength (nm)

800

Projective bRICH layout

Assumptions

- All tiles oriented toward nominal interaction point
- Full coverage to charged particles without overlaps
- Trapezoidal tile profile to maximize the acceptance

Implementation

- 24 sectors in z
- 36 modules in $r\phi$ for each sector
- <u>Photosensitive surface: $\approx 30 \text{ m}^2$ </u>

2023 - FEB configuration and synchronization

- The FEB can work in different mode
 - Alone
 - Master
 - Slave
- In the master and slave configuration the master provides a common 40 MHz clock, trigger signal and event id to slaves

2024 - Trigger and DAQ system

1 DACu = 250 µV

https://indico.cern.ch/event/1307202/contributions/5498756/attachments/2821938/4928175/Weero c%2520-%2520PM4%2520-AIDAINNOVA%2520-%252018-03-24.pdf 22