Cryogenic operation of neutronirradiated SiPM arrays from FBK and Hamamatsu

Esteban Currás Rivera

Laboratoire de Physique des Hautes Energies École Polytechnique Fédérale de Lausanne

- Introduction and motivation
- Silicon PhotoMultiplier (SiPM) modules under study and neutron irradiation
- Measurement in the cryostat setup
 - \rightarrow Breakdown voltage (V_{bd}) \rightarrow irradiated
 - \rightarrow Quenching resistor (R_q) and recovery time (T_r) \rightarrow unirradiated
 - > Photo Detection Efficiency (PDE) → unirradiated
 - → Gain (G) and Direct Crosstalk Probability (DCP) → unirradiated
 - > Dark Count Rate (DCR) based on dark current measurements → irradiated
 - > Signal correlated noise (measured only at 100 K) → irradiated
 - \rightarrow Annealing studies at high temperature (measured only at 100 K) \rightarrow irradiated
- Summary and conclusions

LHCb upgrade I (2019-2021)

The new SciFi detector

- Scintillating Fibre Tracker is installed in the tracking stations located downstream of the LHCb dipole magnet (highlighted in red)
- The scintillation light is recorded with arrays of multi-channel SiPMs

0.250 mm

SiPM challenges for the LHCb Upgrade II (2033)

- More challenging radiation environment
- Mainly dominated by **neutrons**:
 - Neutron radiation expected: $3x10^{12} n_{eq}/cm^2$ (5x Upgrade I)

Goal: cooling with liquid nitrogen at ~100 K

Dark count rate per SiPM channel (DCR)

DCR (not irradiated): 0.04 MHz.

DCR is increasing with neutron radiation.

The SiPMs are positioned far from the beam center.

Neutron radiation expected: $6 \cdot 10^{11} \, n_{eq}/cm^2$.

DCR $(6 \cdot 10^{11} \, n_{eq}/cm^2 \, @ \, RT)$: 550 MHz.

The DCR can be reduced by cooling the SiPM.

DCR $(6 \cdot 10^{11} \text{ n}_{eq}/\text{cm}^2 @ -40 \text{ °C})$: 14 MHz.

Upgrade

from

earned

1st set of SiPM modules for the testing

Produced by FBK in 2022

Wafer layout

NUV-HD-MT

	Wafer n.	Layout	Epi Thickness	DI energy	DI dose	Note	Note
•	1	EPFL	Thin	LF	D3	Cryo	Metal In Trench
	4	EPFL	Thin	LF	D2	Cryo	Metal In Trench
	7	EPFL	Thin	ULF	D3	Cryo	Metal In Trench
	9	EPFL	Thin	ULF	D2	Cryo	Metal In Trench
	11	EPFL	Thin	ULF	D1	Cryo	Metal In Trench

This study will focused on:

- FBK2022 modules of two different pixel size
- HPK2017 modules with a pixel size of —

31.3x31.3 μ m² (FBK 31 um) 41.7x41.7 μ m² (FBK 42 um)

 \rightarrow 62.0x57.0 μ m² (H2017)

Irradiated with **neutrons** in Ljubljana (2023)

- $3x10^{11} n_{eq}/cm^2$
- $1 \times 10^{12} \, n_{eq} / cm^2$
- $3x10^{12} n_{eq}/cm^2$ (nominal fluence)
- $1 \times 10^{13} \, \text{n}_{\text{eq}} / \text{cm}^2$

After irradiation, a thermal annealing of 2 weeks at 30°C was performed

FBK SiPMs: V_{bd} vs temperature

Breakdown voltage as a function of the temperature

We do not observe any variation with the irradiation fluence (dispersion between different modules $\sim 0.5 \text{V}$)

HPK SiPMs: V_{bd} vs temperature

Breakdown voltage as a function of the temperature

We do not observe any variation with the irradiation fluence (bigger dispersion between different modules $\sim 1.0 \text{V}$)

SiPMs: R_q & T_r vs temperature (unirradiated)

Quenching resistor vs temperature

FBK2022 (31 um) H2017 $R_q/R_q(300K)$ $\sim 500 \text{ K}\Omega$ 100 125 175 200 225 250 275 150 Temperature, K

Recovery time vs temperature

- The quenching resistor value at 100 K is a factor of 6-7 higher than at room temperature
- The target recovery time for the experiment should be around 200 ns:
 - Shorter recovery times are better to increase the detector efficiency
 - Longer recovery times are better to minimize the impact of AP

FBK SiPMs: PDE vs temperature (unirradiated)

Illumination: Monochromator ($\lambda = 450 \text{ nm}$)

Illumination: Laser ($\lambda = 450 \text{ nm}$)

- The PDE does not change with temperature significantly
- Big presence of AP due to probably material impurities around 180 K
 - Monochromator: the AP noise is not filtered as there is not trigger signal
 - Laser: the AP noise is filtered, data taking is synchronize with the laser trigger

HPK SiPMs: PDE vs temperature (unirradiated)

Illumination: Monochromator ($\lambda = 450$ nm)

Illumination: Laser ($\lambda = 450 \text{ nm}$)

- The PDE does not change with temperature significantly
- No AP measured, less presence of impurities compared with FBK
 - Monochromator: the AP noise is not filtered as there is not trigger signal
 - Laser: the AP noise is filtered, data taking is synchronize with the laser trigger

FBK SiPMs: G & DCP vs temperature (unirradiated)

Illumination: Monochromator ($\lambda = 450$ nm)

- The gain slightly increases with cooling
- The direct cross talk probability slightly decreases with cooling

Illumination: Laser ($\lambda = 450$ nm)

HPK SiPMs: G & DCP vs temperature (unirradiated)

Illumination: Monochromator ($\lambda = 450$ nm)

- The gain slightly increases with cooling
- The direct cross talk probability slightly decreases with cooling

Illumination: Laser ($\lambda = 450$ nm)

FBK SiPM 42 um: DCR irradiated

DCR as a function of the temperature for different over-voltages:

- DCR decreases with cooling, $\sim 10^5$ from room temperature down to 100K ($K_{1/2} = 10.1$ K slope)
- DCR increase proportional with fluence (NIEL hypothesis) only up to $^{\sim}1 \times 10^{12} \, n_{eq}/cm^2$

FBK SiPM 31 um: DCR irradiated

DCR as a function of the temperature for different over-voltages:

- Same as for $42\mu m$ pixel size but NIEL hypothesis valid up to $\sim 3 \times 10^{12} \, n_{eq}/cm^2$
- For the same over-voltage shows lower DCR (smaller pixel size == lower gain)

DCR as a function of the temperature for different over-voltages:

- DCR decreases with cooling, $\sim 10^5$ from room temperature down to 100K ($K_{1/2} = 10.1$ K slope)
- DCR increase proportional with fluence (NIEL hypothesis) only up to $^{\sim}1 \times 10^{13} \, n_{eq}/cm^2$

Note: values for the fluence of 1×10^{13} extrapolated down to 100K (last measured point at 120 K)

Comparison all SiPMs: DCR vs fluence

LHCb Upgrade I

LHCb Upgrade II

- Best FBK performance in terms of DCR is W9_31um (lower gain), while the worse is W1_42um (highest gain)
- H2017 has lower DCR than the latest technology from FBK but also large increase above $3 \times 10^{12} \, n_{eq}/cm^2$
- Smaller pixels can be operated at higher fluence!

Comparison all SiPMs: DCR vs G

- Better performance of HPK when comparing DCR in terms of gain
- Similar performance of the FBK 42 um and FBK 31 um in terms of gain but, FBK 42 um is better at higher gains
- Beside the difference in the Si wafers (FBK vs HPK), there are difference in the gain layer electric field in all devices

FBK SiPM 42 um: Signal vs ΔV at 100 K

- Laser illumination (450 nm) to get a signal rate around 1 MHz/channel
 - \rightarrow All data normalized to 1 MHz/channel for $\Delta V = 1V$.
- After DCR and PDE correction, it is observe an increase in the correlated noise for fluences higher that $1 \times 10^{12} \, n_{eq}/cm^2$.

FBK SiPM 31 um: Signal vs Δ V at 100 K

- Laser illumination (450 nm) to get a signal rate around 1 MHz/channel
 - \rightarrow All data normalized to 1 MHz/channel for $\Delta V = 1V$
- After DCR and PDE correction, it is observe an increase in the correlated noise for fluences higher that $1 \times 10^{12} \, n_{eq}/cm^2$

HPK SiPM: Signal vs Δ V at 100 K

- Laser illumination (450 nm) to get a signal rate around 1 MHz/channel
 - \rightarrow All data normalized to 1 MHz/channel for $\Delta V = 1V$
- After DCR and PDE correction, it is observe an increase in the correlated noise for fluences higher that $3 \times 10^{12} \, n_{eq}/cm^2$

FBK SiPM 31 um: Annealing (measured at 100 K)

- Initial annealing after irradiation of 2weeks@30°C
- Further annealing at 80°C does not reduce the DCR further
- Only annealing at high temperature (135°C) is reducing DCR

Summary and conclusions:

- Breakdown voltage as a function of the temperature not linear (visible at cryogenic temperatures)
- R_q and T_r increase with cooling, a factor 6-7 from 300 K down to 100 K
- Gain slightly increases with cooling, direct crosstalk slightly decreases with cooling and PDE does not change
- DCR reduced by $\sim 10^3$ for operation (100 K and 4 V) compared to Upgrade I operation (210 K)
 - This leads indeed to an almost noise free detector!
- Large DCR increase beyond fluences of $\sim 1 \times 10^{12}$ n_{eq}/cm² and signal correlated noise increase beyond fluences of $\sim 3 \times 10^{12}$ n_{eq}/cm²
- Small pixel size (low gain) and low ΔV (low gain) are better at high fluences
 - HPK SiPM modules less affected
 - The effect of the gain layer doping profile and wafer quality needs to be better understood
- Annealing at high temperatures (> 80°C) helps to reduce DCR

24

Back up

SiPM modules irradiated at Ljubljana

Irradiated with **neutrons** in Ljubljana (summer 2023)

 $\rightarrow 3x10^{11} \, n_{eq}/cm^2$, $1x10^{12} \, n_{eq}/cm^2$, $3x10^{12} \, n_{eq}/cm^2$ and $1x10^{13} \, n_{eq}/cm^2$

After irradiation, an annealing of 2 weeks at 30°C was performed

		Numbe				
		A	В	C (ref)	D	
Туре	Wafer#	1.00E+13	3.00E+12	1.00E+12	3.00E+11	Total
	1	0	0	0	0	0
	4	1	1	1	1	4
16	7	0	0	0	0	0
	9	1	1	1	1	4
	11	0	0	0	0	0
	1	1	1	2	1	5
	4	1	1	2	1	5
31	7	1	1	2	1	5
	9	1	1	2	1	5
	11	1	1	2	1	5
	1	0	0	0	0	0
	4	1	1	1	1	4
31m	7	1	1	1	1	4
	9	1	1	1	1	4
	11	1	1	1	1	4
	1	1	1	2	1	5
	4	1	1	2	2 1	5
42	7	1	1	2	1	5
	9	1	1	2	1	5
	11	1	1	2	1	5
H2	017	1	1	1	1	4
Total		17	17	27	17	78

Detector #						
Fluence						
A	В	REF	D			
1.00E+13	3.00E+12	1.00E+12	3.00E+11			
#1	#2	#4	#5			
#1	#2	#3	#5			
#5	#6	#7, #8	#9			
#1	#2	#3, #4	#5			
#1	#2	#3, #4	#5			
#1	#2	#4, #5	#6			
#1	#2	#3, #5	#6			
#1	#2	#3	#4			
#1	#2	#5	#6			
#2	#3	#4	#5			
#1	#2	#3	#4			
#2	#3	#5, #6	#8			
#2	#3	#6, #8	#9			
#1	#2	#3, #5	#6			
#1	#2	#3., #4	#5			
#1	#2	#3., #4	#5			
#169	#205	#563	#1149			

One set of H2017 SiPM modules were also included as a reference

Extracting the breakdown voltage

E.g.: FBK_W4_42um (unirradiated)

Method of Inverse Logarithmic Derivative (ILD)

$$ILD = \left(\frac{\mathrm{d}ln[I(V)]}{\mathrm{d}V}\right)^{-1} \equiv \left[\frac{1}{I} \cdot \frac{\mathrm{d}I(V)}{\mathrm{d}V}\right]^{-1}$$

Detector:

FBK_W3_42um_003_Flat

Laser CH81:

- Intensity set for 1 pe.
- Wavelength: 450 nm
- Laser rate: 500 KHz
- Over-voltage: 8.0 V
- 1 pe amplitude: 260 mV
- Threshold for AP: 130 mV
- Excluded all peaks with amplitude higher than 1 pe.

Detector:

FBK_W3_42um_003_Flat

Laser CH81:

- Intensity set for 1 pe.
- Wavelength: 450 nm
- Laser rate: 500 KHz
- Over-voltage: 4.0 V
- 1 pe amplitude: 130 mV
- Threshold for AP: 65 mV
- Excluded all peaks with amplitude higher than 1 pe.

AP = 9.8%

