Cryogenic operation of neutronirradiated SiPM arrays from FBK and Hamamatsu

Esteban Currás Rivera

Laboratoire de Physique des Hautes Energies École Polytechnique Fédérale de Lausanne

6th International Workshop on new Photon-Detectors (PD24) 19 – 21 November 2024, Vancouver

Outlook

- Introduction and motivation
- Silicon PhotoMultiplier (SiPM) modules under study and neutron irradiation
- Measurement in the cryostat setup
	- \rightarrow Breakdown voltage (V_{bd}) \rightarrow irradiated
	- \rightarrow Quenching resistor (R_q) and recovery time (T_r) \rightarrow unirradiated
	- \rightarrow Photo Detection Efficiency (PDE) \rightarrow unirradiated
	- \rightarrow Gain (G) and Direct Crosstalk Probability (DCP) \rightarrow unirradiated
	- \rightarrow Dark Count Rate (DCR) based on dark current measurements \rightarrow irradiated
	- \rightarrow Signal correlated noise (measured only at 100 K) \rightarrow irradiated
	- \rightarrow Annealing studies at high temperature (measured only at 100 K) \rightarrow irradiated
- Summary and conclusions

The new SciFi detector LHCb upgrade I (2019-2021)

- Scintillating Fibre Tracker is installed in the tracking stations located downstream of the LHCb dipole magnet (highlighted in red)
- The scintillation light is recorded with arrays of multi-channel SiPMs

0.250 mm

400 $1e+13$ 200 **SiPM location** $Y(cm)$ $1e + 12$ Ω -200 $1e + 11$ -400 -600 $1e + 10$ -400 -300 -200 Ω 100 200 300 400 -100 X (cm) **Goal: cooling with liquid nitrogen at ~100 K** 19.11.2024 *Esteban Currás Rivera (EPFL)* 4

 $1e + 14$

• More challenging radiation environment

Mainly dominated by **neutrons:**

1MeV neutron Eq. fluence/cm2 for 50fb-1 (100mb)

FLUKA sumulation

Dark count rate per SiPM channel (DCR)

DCR is increasing with neutron radiation.

The SiPMs are positioned far from the beam center.

Neutron radiation expected: $6 \cdot 10^{11}$ n_{eq}/cm².

DCR $(6 \cdot 10^{11} \text{ n}_{eq}/\text{cm}^2 \text{ }(\text{\& RT})$: 550 MHz.

The DCR can be reduced by cooling the SiPM.

DCR $(6 \cdot 10^{11} \text{ n}_{eq}/\text{cm}^2 \text{ } @$ -40 °C): 14 MHz.

DCR (not irradiated): 0.04 MHz.

from

Jearned

SiPM challenges for the LHCb Upgrade II (2033)

600

 \rightarrow 31.3x31.3 μ m² (FBK 31 um)

41.7x41.7 µm2 (FBK 42 um)

1st set of SiPM modules for the testing

Produced by **FBK** in 2022

Wafer layout

NUV-HD-MT

This study will focused on:

- FBK2022 modules of two different pixel size <
- $62.0x57.0 \mu m^2 (H2017)$ • HPK2017 modules with a pixel size of

Irradiated with **neutrons** in Ljubljana (2023)

- $3x10^{11}$ n_{eq}/cm²
- $1x10^{12}$ n_{eq}/cm²
- $3x10^{12}$ n_{eq}/cm² (nominal fluence)
- $1x10^{13}$ n_{eq}/cm²

After irradiation, a thermal **annealing of 2 weeks at 30°C** was performed

FBK SiPMs: V_{bd} **vs temperature**

Breakdown voltage as a function of the temperature We do not observe any variation with the irradiation fluence (dispersion between different modules $\sim 0.5V$)

> unirradiated 3e11 neg/cm2 32 1e12 neg/cm2 3e12 neg/cm2 1e13 neq/cm2 31 $\rm{~}$ Vbd, 30 29 28 27 100 150 200 250 300 Temperature, K

FBK W4 42um

HPK SiPMs: V_{bd} **vs temperature**

Breakdown voltage as a function of the temperature We do not observe any variation with the irradiation fluence (bigger dispersion between different modules $\sim 1.0 \text{V}$)

SiPMs: R_q & T_r vs temperature (unirradiated)

Quenching resistor vs temperature FBK2022 (31 um) FBK2022 (31 um) H2017 H2017 500 6 Recovery Time, ns 5 400 R_q/R_q (300K) 300 200 $\overline{2}$ 100 \sim 500 KΩ 100 125 175 200 225 250 275 300 125 150 175 200 225 250 275 300 150 100 Temperature, K Temperature, K

Recovery time vs temperature

- The quenching resistor value at 100 K is a factor of 6-7 higher than at room temperature
- The target recovery time for the experiment should be around 200 ns:
	- Shorter recovery times are better to increase the detector efficiency
	- Longer recovery times are better to minimize the impact of AP

19.11.2024 *Esteban Currás Rivera (EPFL)* 9

EPFL

EPFL **FBK SiPMs: PDE vs temperature (unirradiated)**

- The PDE does not change with temperature significantly
- Big presence of AP due to probably material impurities around 180 K
	- Monochromator: the AP noise is not filtered as there is not trigger signal
	- Laser: the AP noise is filtered, data taking is synchronize with the laser trigger

EPFL **HPK SiPMs: PDE vs temperature (unirradiated)**

- The PDE does not change with temperature significantly
- No AP measured, less presence of impurities compared with FBK
	- Monochromator: the AP noise is not filtered as there is not trigger signal
	- Laser: the AP noise is filtered, data taking is synchronize with the laser trigger

EPFL **FBK SiPMs: G & DCP vs temperature (unirradiated)**

- The gain slightly increases with cooling
- The direct cross talk probability slightly decreases with cooling

HPK SiPMs: G & DCP vs temperature (unirradiated)

- The gain slightly increases with cooling
- The direct cross talk probability slightly decreases with cooling

EPFL

FBK SiPM 42 um: DCR irradiated

DCR as a function of the temperature for different over-voltages:

- DCR decreases with cooling, $\sim 10^5$ from room temperature down to 100K (K_{1/2} = 10.1 K slope)
- DCR increase proportional with fluence (NIEL hypothesis) only up to $\sim 1 \times 10^{12}$ n_{eq}/cm²

 I_{dark}

 $e \times Gain$

 $DCR =$

FBK SiPM 31 um: DCR irradiated

DCR as a function of the temperature for different over-voltages:

- Same as for 42µm pixel size but NIEL hypothesis valid up to \sim 3 × 10¹² n_{eq}/cm²
- For the same over-voltage shows lower DCR (smaller pixel size $==$ lower gain)

HPK SiPM: DCR irradiated

DCR as a function of the temperature for different over-voltages:

- DCR decreases with cooling, $\sim 10^5$ from room temperature down to 100K (K_{1/2} = 10.1 K slope)
- DCR increase proportional with fluence (NIEL hypothesis) only up to $\sim 1 \times 10^{13}$ n_{eq}/cm²

Note: values for the fluence of 1×10^{13} extrapolated down to 100K (last measured point at 120 K)

Comparison all SiPMs: DCR vs fluence

- Best FBK performance in terms of DCR is W9 31um (lower gain), while the worse is W1 42um (highest gain)
- H2017 has lower DCR than the latest technology from FBK but also large increase above 3×10^{12} n_{eq}/cm²
- Smaller pixels can be operated at higher fluence!

Comparison all SiPMs: DCR vs G

- Better performance of HPK when comparing DCR in terms of gain
- Similar performance of the FBK 42 um and FBK 31 um in terms of gain but, FBK 42 um is better at higher gains
- Beside the difference in the Si wafers (FBK vs HPK), there are difference in the gain layer electric field in all devices

EPEL

FBK SiPM 42 um: Signal vs ΔV at 100 K

- Laser illumination (450 nm) to get a signal rate around 1 MHz/channel
	- λ All data normalized to 1 MHz/channel for $\Delta V = 1$ V.
- After DCR and PDE correction, it is observe an increase in the correlated noise for fluences higher that 1×10^{12} n_{eq}/cm².

8PSL

FBK SiPM 31 um: Signal vs Δ V at 100 K

- Laser illumination (450 nm) to get a signal rate around 1 MHz/channel
	- λ All data normalized to 1 MHz/channel for $\Delta V = 1V$
- After DCR and PDE correction, it is observe an increase in the correlated noise for fluences higher that 1×10^{12} n_{eq}/cm²

HPK SiPM: Signal vs Δ V at 100 K

- Laser illumination (450 nm) to get a signal rate around 1 MHz/channel
	- \rightarrow All data normalized to 1 MHz/channel for $\Delta V = 1V$
- After DCR and PDE correction, it is observe an increase in the correlated noise for fluences higher that 3×10^{12} n_{eq}/cm²

FBK SiPM 31 um: Annealing (measured at 100 K)

FBK W7 31um: dark excess noise (100 K)

- Initial annealing after irradiation of 2 weeks@30°C
- Further annealing at 80^oC does not reduce the DCR further
- Only annealing at high temperature (135^oC) is reducing DCR

19.11.2024 *Esteban Currás Rivera (EPFL)* 22

EPFL

Summary and conclusions:

- Breakdown voltage as a function of the temperature not linear (visible at cryogenic temperatures)
- R_q and T_r increase with cooling, a factor 6-7 from 300 K down to 100 K
- Gain slightly increases with cooling, direct crosstalk slightly decreases with cooling and PDE does not change
- DCR reduced by $\sim 10^3$ for operation (100 K and 4 V) compared to Upgrade I operation (210 K)
	- **This leads indeed to an almost noise free detector!**
- Large DCR increase beyond fluences of $\sim 1x10^{12}$ n_{eq}/cm² and signal correlated noise increase beyond fluences of \sim 3x10¹² n_{eq}/cm²
- Small pixel size (low gain) and low ΔV (low gain) are better at high fluences
	- HPK SiPM modules less affected
	- The effect of the gain layer doping profile and wafer quality needs to be better understood
- Annealing at high temperatures ($> 80^{\circ}$ C) helps to reduce DCR

Back up

SiPM modules irradiated at Ljubljana

Irradiated with **neutrons** in Ljubljana (summer 2023)

 \rightarrow 3x10¹¹ n_{eq}/cm², 1x10¹² n_{eq}/cm², **3x10¹² n_{eq}/cm² and 1x10¹³ n_{eq}/cm²**

After irradiation, an annealing of 2 weeks at 30° C was performed

One set of H2017 SiPM modules were also included as a reference

D

 $#5$

 $#5$

 $#9$ $#5$ $#5$ $#6$ $#6$

 $#4$ $#6$ $#5$ $#4$ $#8$ $#9$ $#6$ $#5$ $#5$

Measurement campaign: V_{bd}

Extracting the breakdown voltage

Method of Inverse Logarithmic Derivative (ILD)

