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Overview
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My answer to Fabrice’s question raised in the introduction

‘Are we going to see more DSiPM soon’ ?

:

We should! 



§ Many physics experiments search for rare events 
(proton decay, dark matter, neutinos) by detecting 
optical photons generated in a ‘scintillator’.

§ Often the scintillator is a liquified noble gas 
(Xenon@165K, Argon@87K) in a tank.
Photo detectors require cold operation
→ need low power dissipation.

§ Only few photons with short wavelength are created.
Detectors must have a low dark count rate (DCR)

§ Need to cover a large area (>10 m2).

§ Gold standard are PMTs, many groups aim for SiPMs

§ We want to study the feasibility of Digital SiPMs in 
particular for DARWIN and XLZD

Motivation: Dark Matter Search with Liquid Scintillators 
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§ Many physics experiments search for rare events 
(proton decay, dark matter, neutinos) by detecting 
optical photons generated in a ‘scintillator’.

§ Often the scintillator is a liquified noble gas 
(Xenon@165K, Argon@87K) in a tank.
Photo detectors require cold operation
→ need low power dissipation.

§ Only few photons with short wavelength are created.
Detectors must have a low dark count rate (DCR)

§ Need to cover a large area (>10 m2).

The Challenge

Motivation: Dark Matter Search with Liquid Scintillators 
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1st Generation Chip
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§ Matrix of 19 × 19 unit cells, 5.7 x 6.2 mm2

§ 10 SPAD sizes per unit cell, different corner radii
§ Simple readout
§ Manufacturing at Fraunhofer Institute IMS, Duisburg, Germany

Process variations to lower DCR @ cold

1st Generation Chip (2020/21)
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Operation down to Liquid Nitrogen Temperature
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Chip

Liquid Nitrogen

Readout FGPA

Long Arm

Postdoc
Michael Keller

2nd Setup for continuous
Temperatures:

1st Setup for LN:



§ Reduced tunneling noise @ cold by technology variation @ IMS: ~ 0.02 Hz / mm2 @ LXe

Dark Count Rate vs. Temperature
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dark counts per mm2

active SPAD area

~50 kHz / mm2

at RT

§ No dependency of DCR from SPAD shape or corner radii – just area!
§ Many SPADs that are ‘hot’ at RT become good @ cold!



§ Scan over active area with ~1µm laser spot
§ Very homogeneous
§ Measured sensitive area matches design value very well

Spatial Sensitivity
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§ We read every pixel → Can identify
crosstalk events as adjacent hits

§ Measure ~2% for a (70µm wide) SPAD
• Depends on overvoltage

Crosstalk

Digital SiPM for Rare Photon Detection P. Fischer, PD24, Vancouver, 19-22.11.2024, Page 10

dark hit dark hit 2 dark hits (very unlikely)
or Xtalk

PhD Michael Keller

1.8% 0.2%

§ More insight: Force a SPAD avalanche by light 
injection at known position

§ Crosstalk occurs if avalanche is at SPAD edge:

§ Crosstalk 0→1 (3%) is larger than 1→0 (2%) 

Photon

SPAD8 SPAD1

MSc Robert Zimmermann

Hits in left SPAD8 vs. position Hits in right SPAD1 vs. position

Only avalanches close to the edge of 
SPAD1 cause a hit (Xtalk) in SPAD8! 

SPAD8

SPAD1

SPAD0

2.3%



2nd Generation Chip
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§ Chip size: ~8 × 9 mm2

§ 32 × 30 pixels with 8640 SPADs
§ SPAD Fill factor ~72%

(including periphery, before pixel masking)

§ Noisy SPADs can be switched off

§ Only 4 logical signals:
• Clk / Command / SerIn, SerOut

§ 3 supplies (Pads duplicated)
• GND, VDD, HV

2nd Generation Chip (2023/24)
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§ High spatial resolution not required.
§ Could use large SPADs for good fill factor
§ But: Noisy SPADs are switched off → significant area loss for large SPADs

Choice of SPAD / Pixel Size
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For illustration only!

No CMOS considered!

§ If defect density is known (@ cold!) → optimal SPAD size for maximal fill factor after masking!



§ Decided to groups 9 SPADs to one ‘pixel’ to save CMOS circuitry
§ 4 pixels form one unit, with common circuit in the center

§ SPADs share one NWELL
§ Can be switched off by changing anode voltage

Pixel Geometry
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§ 9 SPADs per pixel, each SPAD can be disabled
§ Hits of 9 SPADs are OR-ed and set a flipflop (which must be readout, i.e. hits cannot get lost)
§ Readout through row/column addressing

Pixel Architecture
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§ Hit in a column is flagged to periphery
§ A timestamp per columns is recorded

• Timestamps for further hits are wrong

§ Global scanner selects a column
§ Hit rows (→ x/y) are determined
§ Hit FFs in the column are cleared

§ Hits are stored in a FIFO, waiting
there for readout (32 words)

§ Transferring one hit from
matrix to FIFO takes 7 clock cycles.
→ Can transfer 7 Mhits/s @ 50 MHz …

Matrix Readout
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§ Chips are daisy chained (Serin / SerOut / Clk)
• ‘Data packets’ in the stream are defined by injecting ‘1’ pulse to first chip

Hit Readout to DAQ
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§ Chip operation is controlled by a global CMD signal
• Commands are pulse-width encoded
• Chips are addressed with address/data packets through SerIn
• Chip addresses and configuration are programmed this way 



§ A ‘simple’ logic is required to keep the global digital part small
§ Limiting factor are routing resources (350 nm technology, 4 metal layers)

(Digital Layout)
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SAPDs

Digital Part



§ Chips (wafers) back since 1 week!
§ No diced chips yet → test on wafer prober

• Need only 7 needles (4 signal + 3 power)
• Bad signal integrity…

§ All digital tests work!
• SerIn / SerOut
• Write Chip ID
• FIFO test
• Select pixels
• Inject
• Read data
• … 
• 😀

First Chip Tests
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+ Hit dependent energy for each  
processed hit:
• Measured by injecting hits at varying rate 

and reading them out
• For expected hit rates @cold → negligible

§ Pixel / matrix design is fully static, has no clock.

Power consumption
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VDD = 2.5 V: 0.17 mA/MHz
VDD = 3.3 V: 0.26 mA/MHz
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§ Permanent supply current from 
digital periphery / readout part:
• proportional to clock frequency
• Consume ~10 mA @ 50 MHz @ 3V
• ‘nothing’ if clock is off…



§ ‘Cover’ chip with metal mask with a hole
§ Too much stray light on needle side → must mask off bottom part

SPAD Hits – A very first test
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😀



§ Will operate chip in LXe test setup at Freiburg University (within 
DARWIN)

§ Will develop next chip for 3D technology

§ Will develop multi-chip modules.
Silicon substrate (1 routing layer) for
• perfect CTE matching and
• high radio-purity.

• Version 1 will use wire bonds
• Advanced version 2 will use

TSVs under IO pads and bump
bonding

Next Steps
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Version 2: Chip backside contacts
(after postprocessing of wafers)

Version 1 : Wire bonds



§ Chip size: ~ 8 × 9 mm2 limited by space available in run. Could be 20 × 20 mm2

§ Pixel size: ~ 240 × 290 µm2 9 SPADs per pixel
§ Pixels: 32 × 30
§ DCR: ~ 0.02 Hz / mm2 @ 165 K
§ QE: ~ 50% (500..800 nm) process ‘B’ not available in run
§ SPAD Xtalk: ~ 3% (extrapolated)
§ Power: ~ 40mW / cm2 @50 MHz, proportional

§ Disable: each SPAD
§ Readout: each hit
§ Clock: ~ 50 MHz
§ Time stamp res.: 10 ns @50 MHz, double edge clocking. SPADs are much better!
§ Clocks / Hit: 28 bit bits in serial data word (10 bit time stamp, 6 bit chip ID)
§ Max. link rate: 1.8 Mhits / s @50 MHz
§ Chips / Chain: ≤ 64 with present 6 bit chip ID

Some Chip Parameters
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§ DSiPMs can have excellent DCR and high fill factor!

§ Advantages of DSiPM are:
• Application-specific readout architectures
• High spatial and time resolution
• Very simple system (detection and readout on one piece of silicon)
• Low Power dissipation (no amplifiers!) – (but depending on time stamp resolution, readout speed…)
• Low intrinsic radioactivity,….

§ Open issues:
• UV sensitivity (→ use ‘PureB’ process) or use WLS
• Emission of photons from circuitry. Is that an issue in our data-driven design?
• Radiation hardness ? (No issue for DARWIN)
• …
• Availability of more vendors with very good quality SPADs

Summary
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Thank you for your attention!

… sorry that I could not come in person …

Contact: peter.fischer@ziti.uni-heidelberg.de
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