Ultra-Low Resource Time-to-Digital Converter for PET TOF Systems Achieving Sub-10 ps Resolution Using LUT-Based Counter on FPGA

Daehee Lee¹, Ian Hwang², Sun II Kwon¹

- 1. Department of Biomedical Engineering, UC Davis, California, USA
- 2. Baskin School of Engineering, UC Santa Cruz, California, USA

November 21, 2024

Time-to-Digital Converters (TDCs)

are electronic circuits that digitize <u>continuous</u> time values into <u>discrete</u> digital values.

Time-to-Digital Converters (TDCs)

are electronic circuits that digitize <u>continuous</u> time values into <u>discrete</u> digital values.

UCDAVIS BIOMEDICAL ENGINEERING

Application-specific Integrated Circuit (ASIC) vs. Field-programmable Gate Array (FPGA)

Tapped Delay Line (TDL) with CARRY4

A CLB is crucial for fast signal propagation and TDL implementation.

Thermometer codes C0 - C1 - C2 - C3 - C4 ... 1 - 0 - 0 - 0 - 0 ...

Tapped Delay Line (TDL) with CARRY4

A CLB is crucial for fast signal propagation and TDL implementation.

Thermometer codes $C0 - C1 - C2 - C3 - C4 \dots$ $1 - 0 - 0 - 0 - 0 \dots$ $1 - 1 - 0 - 0 - 0 \dots$

Tapped Delay Line (TDL) with CARRY4

A CLB is crucial for fast signal propagation and TDL implementation.

Thermometer codes $C0 - C1 - C2 - C3 - C4 \dots$ $1 - 0 - 0 - 0 - 0 \dots$ $1 - 1 - 0 - 0 - 0 \dots$ $1 - 1 - 1 - 0 - 0 \dots$

Tapped Delay Line (TDL) with CARRY4

A CLB is crucial for fast signal propagation and TDL implementation.

Thermometer codes $CO - C1 - C2 - C3 - C4 \dots$ $1 - 0 - 0 - 0 - 0 \dots$ $1 - 1 - 0 - 0 - 0 \dots$ $1 - 1 - 1 - 0 - 0 \dots$ $1 - 1 - 1 - 1 - 0 \dots$ $1 - 1 - 1 - 1 - 1 \dots$

Average timing resolution with CARRY4 is ~10 ps (Virtex-7 series, Xilinx).

Tapped Delay Line (TDL) with CARRY4

A CLB is crucial for fast signal propagation and TDL implementation.

Thermometer codes $CO - C1 - C2 - C3 - C4 \dots$ $1 - 0 - 0 - 0 - 0 \dots$ $1 - 1 - 0 - 0 - 0 \dots$ $1 - 1 - 1 - 1 - 0 \dots$ $1 - 1 - 1 - 1 - 1 \dots$

Average timing resolution with CARRY4 is ~10 ps (Virtex-7 series, Xilinx).

Average timing resolution with CARRY8 is ~5 ps (Ultrascale series, Xilinx).

Tapped Delay Line (TDL) with CARRY4

Jun Yeon Won et al, 2016

FPGA resources are limited.

→ The smaller the resource usage, the more TDC implementations can be accommodated.

Tapped Delay Line (TDL) with CARRY4

Proposed LUT-based TDC

Proposed LUT-based TDC

Schematic of the proposed LUT-based TDC

The input logic generates a pulse when the TimeIN is enqueued

and terminates the pulse at the next clock edge.

Schematic of the proposed LUT-based TDC

Schematic of the proposed LUT-based TDC

BIOMEDICAL ENGINEERING

Schematic of the proposed LUT-based TDC

Schematic of the proposed LUT-based TDC

Single channel test

Multi-channel Test

 \rightarrow No temperature correction circuit, which requires a huge resource, is needed.

BIOMEDICAL ENGINEERING

4. Conclusion

Resource use comparison

Utilization	CARRY8-based TDC	LUT-based TDC	Differences
CARRY8	102	2	-100 (▼98%)
CLB LUTs	837	404	-432(▼52%)
CLB Registers	1110	807	-303(▼27%)

Power consumption comparison

Power consumption	CARRY8-based TDC	LUT-based TDC	Differences
Ch	0.109 W	0.006W	-0.103W(▼94%)

Reduced resource usage and lower power consumption enable the implementation of more TDC channels within a limited area.

4. Conclusion

 LUT-based Time-to-Digital Converter is successfully implemented with dramatically reduced resources

Average bin size 9.4 ps - Sub-10 ps Bin Size

is internally free from location and temperature variation

The clock-asynchronized LUT-based TDC operates in a random sequence, minimizing the impact of temperature and location variations on performance. As a result, there is no need to implement correction circuits, which would otherwise require a significantly large amount of resources.

• Next step

The LUT-based TDC still exhibits large bins (>40ps).

→ It will be investigated to make bin size more even

Thank you for your attention.

Single channel test

