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1. Time-to-Digital Converter

NON-TOF PET TOF PET
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*LOR: Line of Response
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Siemens Biograph mCT (PET/CT), 2019

Time-of-flight Positron Emission Tomography
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1. Time-to-Digital Converter

Application-specific Integrated Circuit (ASIC)  vs. Field-programmable Gate Array (FPGA)

Feature ASIC FPGA

Purpose Fixed function Reconfigurable

Performance High Moderate

Power Low High

Flexibility Low High

Development cost High Low

Unit cost Low High

Time to market Long Short

Logic density High Moderate

Rui Machado et al., (2019)

FPGA-based TDC

Coarse Counter

Phased Clocks

Tapped Delay Line

Differential

Pulse shrinking
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1. Time-to-Digital Converter

Tapped Delay Line (TDL) with CARRY4
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A CLB is crucial for fast signal propagation and TDL implementation.
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1. Time-to-Digital Converter
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Tapped Delay Line (TDL) with CARRY4
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Tapped Delay Line (TDL) with CARRY4
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1. Time-to-Digital Converter

Average timing resolution with CARRY4 is 

~10 ps (Virtex-7 series, Xilinx).
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Tapped Delay Line (TDL) with CARRY4

CLB N

TIMEIN

MUX
1

1
   0O0

CO0

MUX
1

1
   0O1

CO1

MUX
1

1
   0O2

CO2

MUX
1

1
   0O3

CO3 

D  Q

D  Q

D  Q

D  Q

C0

C1

C2

C3

DFFs

C
A

R
R

Y
4

CLB 0

TDL

CLB N-1

Clock 

Average timing resolution with CARRY8 is 

~5 ps (Ultrascale series, Xilinx).

A CLB is crucial for fast signal propagation and TDL implementation.



1. Time-to-Digital Converter
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FPGA-based TDC

Coarse Counter

Phased Clocks

Tapped Delay Line

Differential

Pulse shrinking

Jun Yeon Won et al, 2016

+

Tapped Delay Line (TDL) with CARRY4

FPGA resources are limited. 

➔ The smaller the resource usage, the more TDC implementations can be accommodated.

Ultra bins are unavoidable due to clock region changes.
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1. Time-to-Digital Converter

Ideal FWHM: 198 ps

Measured FWHM: 205 ps
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Simulation

Average bin size 5 ps

Std 5 ps

Tapped Delay Line (TDL) with CARRY4

Simulation results

CARRY8-based TDC 

CARRY4-based TDC 



2. Proposed LUT-based TDC

Proposed LUT-based TDC

7

FPGA-based TDC

Coarse Counter

Phased Clocks

Tapped Delay Line

Differential

Pulse shrinking

LUT-based Counter

Not Synchronized to the Clock

#1 #2

Clock Cycle

…

#1 #2 #5#4#3 #6 #7 …

LUT-based Counter

Clock-based Counter

Low resource is required for LUT-based counter

But the average bin size is ~250 ps

~250 ps
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Proposed LUT-based TDC
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Low resource is required for LUT-based counter

But the average bin size is ~250 ps ➔ 10 ps
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Schematic of the proposed LUT-based TDC

2. Proposed LUT-based TDC
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Single channel test

3. Experiment Results
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Average bin size is stable. 

➔ No temperature correction circuit, which requires a huge resource, is needed.

3. Experiment Results
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Location Test
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TDC ch2
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3. Experiment Results
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4. Conclusion

Utilization CARRY8-based TDC LUT-based TDC Differences

CARRY8 102 2 -100 (▼98%)

CLB LUTs 837 404 -432(▼52%)

CLB Registers 1110 807 -303(▼27%)

• Resource use comparison

16

• Power consumption comparison

Power consumption CARRY8-based TDC LUT-based TDC Differences

Ch 0.109 W 0.006W -0.103W(▼94%)

Reduced resource usage and lower power consumption enable the 

implementation of more TDC channels within a limited area.



4. Conclusion

• LUT-based Time-to-Digital Converter 
is successfully implemented with dramatically reduced resources

17

Average bin size 9.4 ps Sub-10 ps Bin Size

is internally free from location and temperature variation

The clock-asynchronized LUT-based TDC operates in a random sequence, 

minimizing the impact of temperature and location variations on performance.

As a result, there is no need to implement correction circuits, which would otherwise 

require a significantly large amount of resources.

• Next step

The LUT-based TDC still exhibits large bins (>40ps).

➔ It will be investigated to make bin size more even



Q & A

Thank you for your attention.
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Differential Nonlinearity (DNL) and Integral Nonlinearity (INL)
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Single channel test
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