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Summarize key Takeaways



Amorphous Selenium 
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Benefits:
• Large area, low cost, maturity
• Good absorption properties for relatively low energy 

(mammography, 30kVp), 200 μm thick layer
• Low dark current (Eg = 2.2eV)
• Potential for gain (avalanche)
• High spatial resolution (direct detector)

Selenium is part of the chalcogen group (Group 
VI) in the periodic table. 

Amorphous selenium is widely used in X-ray 
detectors.

www.hruimetal.com Kasap, et al. J Mater Sci: Mater Electron 26, 4644–4658 (2015)



From Medical Imaging to High Energy Physics

Rooks, M., et  al, Journal of Instrumentation 18, P01029 (2023).

a-Se flat panel detector a-Se detector for use in liquid noble detector

W. Zhao et al, Medical Physics 30, 254-263 (2003)

Hellier et  al, SPIE Medical Imaging (2023)
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A-Se as Indirect Conversion: 
Pushing the Limits of Sensitivity 

Matching Sensitivity Spectrum of Photodetector with Emission of Scintillator 

a-Se is an excellent absorber for 
VUV-UV-Blue emitters like liquid 

Ar, NaI, undoped CsI.
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A-Se as Indirect Conversion: 
Pushing the Limit of Sensitivity 

Matching Sensitivity Spectrum of Photodetector with Emission of Scintillator 

But has low absorption – and low 
efficiency – for high-yield long-

wavelength emitters
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Doping and Alloying with Group IV, V, & VI elements
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Can change properties such as:

<r> = 2.40

<r> = 2.80

<r> = 2.13

Se
X

• Band gap

• Leakage currents

• Carrier transport

• Sensitivity

• Structure & coordination

• Crystallization

• Stability



Doping and Alloying with Group IV, V, & VI elements
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• Doped at 0.1 –
0.5 %

• Stabilizes, 
preventing 
crystallization

• Introduces deep 
hole trap states, 
lowering carrier 
lifetime

Arsenic

• 10-40 ppm

• Mitigates deep 
hole traps from As

• Improves carrier 
lifetimes, with 
minimal effect on 
mobilities

Chlorine

Kasap et. al, JMS Mat. in Elec. 
(2000), v 11, 3, p 179

Kasap et. al, Semiconductors, 
(2003) v 37, 7, p 789



Doping and Alloying with Group IV, V, & VI elements
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• Increasing Te 
decreases Eg

• Induces traps, 
lowering µ and 𝜏

• Increases 
conductivity

• Increases 
crystallization 
temperature

Tellurium

• Ge may lower
Eg, however 
studies differ

• Lowers µe, then 
increases

• Increases 
thermal stability

• Properties are 
very content 
dependent

Germanium

Nang, et al., Jpn. JAP 
(1976), v 15,  5, p 849

Kim & Shirafuji, Jap. JAP. 
(1978), v 17, 10, p 1789

Hellier et. al, ACS AEM 
(2023), v 5, 5, p 2678

Goal: Find the right compositions and architectures 
to maximize sensitivity and transport properties for 

full-spectrum sensitivity



Doping and Alloying with Group IV, V, & VI elements

• Se-Te previously investigated for 
photodetection, solar cells, memory 
applications

• Ge-Se & Ge-Se-Te primarily investigated 
for switching devices, memory

➢Literature reaches differing 
conclusions on optical and electronic 
properties, leaving questions waiting 
to be answered 
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L. Tichy, et al., J. Non-Cryst. Sol. 
(1998), v 240, 1, p 177

T. T. Nang, et al., Jpn. J. Appl. 
Phys.(1976), v 15,  5, p. 849



Exploring Se-Te Concentration and Stacked Configurations

1. Develop Se-Te fabrication capabilities

2. Investigate and confirm optical and 
electronic properties
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+ -

Se-Te Photodetectors for long wavelength 
sensitivity

1. Fabricate stacked architectures of Se/Se-
Te in vertical and lateral structures

2. Compare optoelectronic properties to 
determine optimum architectures

Stacked Se/Se-Te for high transport and full 
spectrum sensitivity 



RIL Fabrication Facilities

• Custom-built, dedicated 
selenium thermal evaporator 
and e-beam deposition 
systems

• Capable of multi-material 
depositions, including all 
layers for detector 
architecture
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Characterization
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Alloying of a-Se1-xTex
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Increasing 
Te Content
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Alloying of a-Se1-xTex
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Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

a-Se0.90Te0.10

sample

Glass/ITO

Se:Te

Au

[17] Kasap and Juhasz, J.Non-Cryst. Sol. (1985), v 72, 1, p 23
[18] Juhasz et a., J. Mat. Sci. (1987), v 22, 7, p 2569



Alloying of a-Se1-xTex
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Alloying of a-Se1-xTex

• At low fields, CE limited by trap states 
and low thermalization

• At moderate to high fields, CE 
recovers as carriers gain enough 
energy to escape traps

→Modified Onsager model, with 
thermalization length (r0) a function 
of field – not just wavelength
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Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

𝜆 = 355 nm

Pai and Enck, Phys. Rev. B (1975), v 11, 12, p



Alloying of a-Se1-xTex
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E = 15 V/μm

Increasing Te concentration → increased CE at long 
wavelengths, especially at higher fields

E = 40 V/μm

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678



Stacked a-Se/Se-Te for Improved Sensitivity
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Au

ITO/Glass

a-Se

Se-Te

Glass

Au Au

a-Se

Se-Te

• Long wavelengths have low CE in a-Se

• Short wavelengths absorbed in under 50 nm a-Se

• Se-Te has higher CE for long wavelengths

➢ Utilizing stacked layers, we can:

• Improve sensitivity to long wavelengths with Se-Te

• Preserve high transport for short wavelengths with 
a-Se

→ Goal: Investigate application of stacking in vertical 
(top) and lateral (bottom) devices



Stacked a-Se/Se-Te in Vertical Devices
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Penetration depth in Se and Se-Te
15 μm Se-Te

90 nm a-Se

14.5 μm Se-Te

500 nm a-Se

14.5 μm a- Se

500 nm Se-Te

1. Vertical Stack with thin a-
Se for short wavelengths, 
Se-Te for long 
wavelengths

2. Thick a-Se absorber layer, 
Se-Te transport layer

3. Thick Se-Te absorber 
layer, a-Se transport layer

4. Solid a-Se and Se-Te for 
control devices

Mirzanezhad et al., ACS Opt. Mat. (pending)



Vertical Structure: Improving QCE

• V1, V2, V4 perform similarly, in line 
with a-Se performance

• V5 – Se-Te absorption layer, Se 
transport layer – has lowest 
performance

• V3 – thin Se absorption, Se-Te long-
wavelength – has highest CE
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15 μm a-Se 15 μm Se-Te
90 nm a-Se

15 μm Se-Te

500 nm a-Se

14.5 μm Se-Te

500 nm Se-Te

14.5 μm a-Se

𝜆 = 365 nm

Mirzanezhad et al., ACS Opt. Mat. (pending)



Vertical Structure: Improving Sensitivity

• V3 – thin a-Se with Se-Te for long 
wavelength – outperforms other 
samples

• ~15% increase in CE at short 
wavelengths

• Maintains sensitivity at long 
wavelengths

→ Allows for high CE at low fields
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V = 15 V/μm

15 μm a-Se 15 μm Se-Te
90 nm a-Se

15 μm Se-Te

500 nm a-Se

14.5 μm Se-Te

500 nm Se-Te

14.5 μm a-Se

Mirzanezhad et al., ACS Opt. Mat. (pending)



Vertical Structure: Improving Sensitivity
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Stack with thin a-Se (90 nm) for absorbing short 
wavelengths and thick Se-Te (14.5 μm) for absorbing 

long wavelengths outperforms all others

15 μm a-Se 15 μm Se-Te
90 nm a-Se

15 μm Se-Te

500 nm a-Se

14.5 μm Se-Te

500 nm Se-Te

14.5 μm a-Se

Mirzanezhad et al., ACS Opt. Mat. (pending)



Vertical Structure: Improved Transport

• Transport occurs via trap-assisted hopping through shallow trap states

• Thin a-Se easily transports to Se-Te – thicker a-Se has more time to relax to shallow 
trap states, reducing extraction

• Se-Te as absorber layer has increased barrier for hole transport, with greater 
Schottky barrier from a-Se to Au → reduced extraction
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a-Se

Au 

ITO

Se-Te Se-Te

Au 

ITO
a-Se

Mirzanezhad et al., ACS Opt. Mat. (pending)



Stacked a-Se/Se-Te in Lateral Devices
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Penetration depth in Se and Se-Te IDEs with 15 μm separation, 
15 μm electrode width

1. Lateral a-Se, 300 nm

2. Lateral Se-Te, 300 nm

3. a-Se 100 nm top layer 
(short wavelength), Se-Te 
200 nm bottom layer 
(long wavelength)

300 nm Se-Te

100 nm a-Se

200 nm Se-Te

300 nm a-Se

Mirzanezhad et al., ACS Opt. Mat. (pending)



Lateral Structure: QCE
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Glass

Au Au

a-Se

Se-Te

Glass

Au Au
Se-Te

Glass

Au Au
a-Se

• All three have similar CE at lower fields

• As field increases:

• Solid Se-Te becomes highest 
performer

• Se underperforms compared to 
others (though in-line with 
literature)

• Multilayer falls as a combination of 
the Se and Se-Te performance

𝜆 = 365 nm

Mirzanezhad et al., ACS Opt. Mat. (pending)



Lateral Structure: Responsivity
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• Follows similar trends as 365 nm light:

• Se-Te has highest performance, and 
improved long-wavelength 
sensitivity in line with penetration 
depth

• a-Se underperforms in comparison

• Multilayer has QCE better than equal 
combination of the two, but still falls 
short compared to solid Se-Te

V = 15 V/μm

Glass

Au Au

a-Se

Se-Te

Glass

Au Au
Se-Te

Glass

Au Au
a-Se

Abbaszadeh et al., IEEE Elec. Dev. Let. (2011), v 32, 9, p 1263Mirzanezhad et al., ACS Opt. Mat. (pending)



Lateral Structure: Responsivity
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Solid Se-Te lateral device maintains the highest 
performance in CE and sensitivity. 

Glass

Au Au

a-Se

Se-Te

Glass

Au Au
Se-Te

Glass

Au Au
a-Se

Mirzanezhad et al., ACS Opt. Mat. (pending)



Lateral Structure: Transport

• a-Se forms in disordered “ring” 
structure

• Heat (used during fabrication) 
and light induce transformation 
to disordered chain structure

→ Transport across non-bonded 
atoms may be reduced, creating 
decreased CE for fields 
perpendicular to growth/chain 
direction
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Mirzanezhad et al., ACS Opt. Mat. (pending)

W. Lu et al., “Structure of Amorphous Selenium: Small Ring, Big 
Controversy,” J. Am. Chem. Soc. (2024), v 146, 9, p 6345



Key Takeaways

• Alloying selenium (Se) with tellurium (Te) enhances long-wavelength sensitivity

• Adding Te reduces QE at low fields for short wavelength. High field recovers the  
reduced QE. 

• Stacked configurations (a-Se and Se-Te) of vertical structure outperformed Se-Te
devices. 

• Uniform Se-Te configuration of lateral structure outperformed Stacked
configurations.
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Future Direction and Research Opportunities

• Expand experimental analysis of alloy compositions

• Looking at evaluating the effect in impact ionization

• Long-term stability 

• Photo-induced effect 

• Develop co-deposition capabilities of Se and Ge to achieve 
high quality, uniform films

• Controlling the electron mobility

• Tuning optical and electronic properties
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Modeling Density of States in Se-Te
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• Hybrid DFT using Vienna Ab initio 
Simulation Package (VASP), 
Perdew−Burke−Ernzerhof (PBE) 
exchange− correlation functional, 
disordered supercell with 
Stochastic quenching and 
structural relaxation 

• DOS calculated for a-Se1-xTex (x=0, 
0.9, 0.18, 0.28, 0.43, 0.79) →
Optical & Mobility Gaps

• Inverse Participation Ratio (IPR) 
gives distinction between 
localized and delocalized states

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

Se0.82Te0.18



Modeling Density of States in Se-Te
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Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

• Predicted mobility gap matches 
reported values for a-Se (2.0-2.2 
eV)

• Predicted optical gaps in-line with 
those found in experiment

• Se-Te known to crystalize for 
Te>30% → reduced separation of 
mobility and optical gap

➢ Hybrid DFT allows for reasonable 
prediction of optical and 
electronic states in new 
materials



A-Se as Direct Conversion: 
Pushing the Limit of Spatial Resolution 

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu 36

Anrad AXS-2430 a-Se 
mammography panel

Attenuation properties of a-SeCommercial panel

Specifications

3T active pixel sensor

300-400e RMS noise (improvements are possible)

25 µm pixel pitch

640 x 640 pixel array

1.6 x 1.6 cm active area

Aorta stent in glass vial, 25-50 μm
wire diameter

Scott, Abbaszadeh et al., SPIE Medical Imaging, 2014.


