

Pushing the limit of photodetection by bandgap engineering through alloying and stacking

Shiva Abbaszadeh

Radiological Instrumentation Laboratory Electrical and Computer Engineering ril.soe.ucsc.edu

Outline

Amorphous Selenium

www.hruimetal.com

Selenium is part of the **chalcogen group** (Group VI) in the periodic table.

Amorphous selenium is widely used in X-ray detectors.

Benefits:

- Large area, low cost, maturity
- Good absorption properties for relatively low energy (mammography, 30kVp), 200 μm thick layer
- Low dark current (E_g = 2.2eV)
- Potential for gain (avalanche)
- High spatial resolution (direct detector)

Kasap, et al. J Mater Sci: Mater Electron 26, 4644-4658 (2015)

From Medical Imaging to High Energy Physics

a-Se flat panel detector

W. Zhao et al, *Medical Physics* 30, 254-263 (2003) Hellier et al, SPIE Medical Imaging (2023)

•

Rooks, M., et al, Journal of Instrumentation 18, P01029 (2023).

A-Se as Indirect Conversion: Pushing the Limits of Sensitivity

Matching Sensitivity Spectrum of Photodetector with Emission of Scintillator

a-Se is an excellent absorber for VUV-UV-Blue emitters like liquid Ar, Nal, undoped Csl.

A-Se as Indirect Conversion: Pushing the Limit of Sensitivity

Matching Sensitivity Spectrum of Photodetector with Emission of Scintillator

But has low absorption – and low efficiency – for high-yield longwavelength emitters

Can change properties such as:

- Band gap
- Leakage currents
- Carrier transport
- Sensitivity
- Structure & coordination
- Crystallization
- Stability

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

- Se-Te previously investigated for photodetection, solar cells, memory applications
- Ge-Se & Ge-Se-Te primarily investigated for switching devices, memory
 - Literature reaches differing conclusions on optical and electronic properties, leaving questions waiting to be answered

Sample	$E_{\rm g}$ (v)	x	E_{g}^{opt} (eV
a-Se	2.11 ± 0.01	0.1	2.0
$a-Ge_{15}Se_{85}$	2.14 ± 0.01	0.2	1.9
a-Ge ₂₅ Se ₇₅	2.25 ± 0.01	0.3	1.8
L. Tichy, et al., <i>J. Non-Cryst. Sol.</i> (1998), v 240, 1, p 177		0.33	_
		0.4	1.7
		0.5	1.5
		0.6	1.2
T. T. Nang, et al., Jpn. J. Appl.		0.7	_
		0.8	1.1
<i>Phys.</i> (1976), v 1	15, 5, p. 849 🗾 💆	0.9	0.91

Exploring Se-Te Concentration and Stacked Configurations

Se-Te Photodetectors for long wavelength sensitivity

- 1. Develop Se-Te fabrication capabilities
- 2. Investigate and confirm optical and electronic properties

Stacked Se/Se-Te for high transport and full spectrum sensitivity

- Fabricate stacked architectures of Se/Se-Te in vertical and lateral structures
- 2. Compare optoelectronic properties to determine optimum architectures

RIL Fabrication Facilities

- Custom-built, dedicated selenium thermal evaporator and e-beam deposition systems
- Capable of multi-material depositions, including all layers for detector architecture

PhD student

Dr. Kaitlin Hellier Postdoctoral Scholar

Molly McGrath MS student

Characterization

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

Alloying of $a-Se_{1-x}Te_x$

[17] Kasap and Juhasz, J.Non-Cryst. Sol. (1985), v 72, 1, p 23
[18] Juhasz et a., J. Mat. Sci. (1987), v 22, 7, p 2569

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

- At low fields, CE limited by trap states and low thermalization
- At moderate to high fields, CE recovers as carriers gain enough energy to escape traps
- → Modified Onsager model, with thermalization length (r_0) a function of field – not just wavelength

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

Pai and Enck, Phys. Rev. B (1975), v 11, 12, p

Increasing Te concentration \rightarrow increased CE at long wavelengths, especially at higher fields

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

Stacked a-Se/Se-Te for Improved Sensitivity

- Long wavelengths have low CE in a-Se
 - Short wavelengths absorbed in under 50 nm a-Se
- Se-Te has higher CE for long wavelengths
- Utilizing stacked layers, we can:
 - Improve sensitivity to long wavelengths with Se-Te
 - Preserve high transport for short wavelengths with a-Se
- → Goal: Investigate application of stacking in vertical (top) and lateral (bottom) devices

Stacked a-Se/Se-Te in Vertical Devices

- Vertical Stack with thin a-Se for short wavelengths, Se-Te for long wavelengths
- 2. Thick a-Se absorber layer, Se-Te transport layer
- 3. Thick Se-Te absorber layer, a-Se transport layer
- 4. Solid a-Se and Se-Te for control devices

Mirzanezhad et al., ACS Opt. Mat. (pending)

Vertical Structure: Improving QCE

30

25

Applied Field (V/µm)

35

- V1, V2, V4 perform similarly, in line with a-Se performance
 - V5 Se-Te absorption layer, Se transport layer – has lowest performance
 - V3 thin Se absorption, Se-Te longwavelength – has highest CE

Mirzanezhad et al., ACS Opt. Mat. (pending)

0.6

0.4

0.2

0.0

0

 λ = 365 nm

Vertical Structure: Improving Sensitivity

Mirzanezhad et al., ACS Opt. Mat. (pending)

Vertical Structure: Improving Sensitivity

Stack with thin a-Se (90 nm) for absorbing short wavelengths and thick Se-Te (14.5 μm) for absorbing long wavelengths outperforms all others

Mirzanezhad et al., ACS Opt. Mat. (pending)

Vertical Structure: Improved Transport

- Transport occurs via trap-assisted hopping through shallow trap states
- Thin a-Se easily transports to Se-Te thicker a-Se has more time to relax to shallow trap states, reducing extraction
- Se-Te as absorber layer has increased barrier for hole transport, with greater Schottky barrier from a-Se to Au → reduced extraction

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

Stacked a-Se/Se-Te in Lateral Devices

IDEs with 15 μ m separation, 15 μ m electrode width

- 1. Lateral a-Se, 300 nm
- 2. Lateral Se-Te, 300 nm
- 3. a-Se 100 nm top layer (short wavelength), Se-Te200 nm bottom layer (long wavelength)

Mirzanezhad et al., ACS Opt. Mat. (pending)

Lateral Structure: QCE

Mirzanezhad et al., ACS Opt. Mat. (pending)

Lateral Structure: Responsivity

Mirzanezhad et al., ACS Opt. Mat. (pending)

- Follows similar trends as 365 nm light:
 - Se-Te has highest performance, and improved long-wavelength sensitivity in line with penetration depth
 - a-Se underperforms in comparison
 - Multilayer has QCE better than equal combination of the two, but still falls short compared to solid Se-Te

Abbaszadeh et al., IEEE Elec. Dev. Let. (2011), v 32, 9, p 1263

Lateral Structure: Responsivity

Solid Se-Te lateral device maintains the highest performance in CE and sensitivity.

Mirzanezhad et al., ACS Opt. Mat. (pending)

Lateral Structure: Transport

- a-Se forms in disordered "ring" structure
- Heat (used during fabrication) and light induce transformation to disordered chain structure
- → Transport across non-bonded atoms may be reduced, creating decreased CE for fields perpendicular to growth/chain direction

W. Lu *et al.*, "Structure of Amorphous Selenium: Small Ring, Big Controversy," *J. Am. Chem. Soc.* (2024), v 146, 9, p 6345

Mirzanezhad et al., ACS Opt. Mat. (pending)

Key Takeaways

- Alloying selenium (Se) with tellurium (Te) enhances long-wavelength sensitivity
- Adding Te reduces QE at low fields for short wavelength. High field recovers the reduced QE.
- Stacked configurations (a-Se and Se-Te) of vertical structure outperformed Se-Te devices.
- Uniform Se-Te configuration of lateral structure outperformed Stacked configurations.

Future Direction and Research Opportunities

- Expand experimental analysis of alloy compositions
 - Looking at evaluating the effect in impact ionization
 - Long-term stability
 - Photo-induced effect
- Develop co-deposition capabilities of Se and Ge to achieve high quality, uniform films
 - Controlling the electron mobility
 - Tuning optical and electronic properties

Radiological Instrumentation Laboratory (RIL)

Dr. Shiva Abbaszadeh Electrical & Computer Engineering sabbasza@ucsc.edu

Postdoctoral Scholars

Dr. Kaitlin Hellier Dr. Jennifer Ott (SCIPP)

Graduate Students

Gregory Romancheck (UIUC) Akyl Swaby Greyson Shoop Daniel Fiallo Kimia Gholemi Mohammadreza Mohseni Ferezghi Hamid Mirzanezhad Spencer Balliet Molly McGrath

Undergraduate Students

Max Teichera Evelyn Cooper

Funding Provided by:

National Institute of Health R01EB033466

Department of Energy High Energy Physics DE-SC0022343

UC SANTA CRUZ Baskin

Western Digital Corporation

Pushing the limit of photodetection by bandgap engineering through alloying and stacking

Shiva Abbaszadeh

Radiological Instrumentation Laboratory Electrical and Computer Engineering ril.soe.ucsc.edu

Modeling Density of States in Se-Te

- Hybrid DFT using Vienna Ab initio Simulation Package (VASP), Perdew-Burke-Ernzerhof (PBE) exchange- correlation functional, disordered supercell with Stochastic quenching and structural relaxation
- DOS calculated for a-Se_{1-x}Te_x (x=0, 0.9, 0.18, 0.28, 0.43, 0.79) →
 Optical & Mobility Gaps
- Inverse Participation Ratio (IPR) gives distinction between localized and delocalized states

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

S. Abbaszadeh | UC Santa Cruz Engineering | PD24 Vancouver | sabbasza@ucsc.edu

Modeling Density of States in Se-Te

- Predicted mobility gap matches reported values for a-Se (2.0-2.2 eV)
- Predicted optical gaps in-line with those found in experiment
- Se-Te known to crystalize for Te>30% → reduced separation of mobility and optical gap
- Hybrid DFT allows for reasonable prediction of optical and electronic states in new materials

Hellier et. al, ACS AEM (2023), v 5, 5, p 2678

A-Se as Direct Conversion: Pushing the Limit of Spatial Resolution

Specifications	
3T active pixel sensor	
300-400e RMS noise (improvements are possible)	
25 μm pixel pitch	
640 x 640 pixel array	
1.6 x 1.6 cm active area	

Aorta stent in glass vial, 25-50 μm wire diameter

Scott, Abbaszadeh et al., SPIE Medical Imaging, 2014.