Single-Photon Detectors for Particle Identification in High-Energy Physics Experiments

Massimiliano Fiorini

(INFN and University of Ferrara)

University of Ferrara

6th International Workshop on New Photon-Detectors (PD24) Vancouver, 19-22 November 2024

Particle Identification (PID) in HEP

- PID in HEP experiments is of great importance
 - PID techniques based particles detection via their interaction with matter: ionization and excitation (Cherenkov & Transition Radiation)
 - In addition to momentum measurement (magnetic spectrometer), we need other information (e.g. velocity, etc.) to determine PID
- Applicable methods strongly depend on particle momentum (velocity)

Time-of-Flight (ToF) detectors

• Extract the velocity from time difference Δt for two particles of known momentum *p* between the signals of two (usually scintillation or gas) counters at a known distance *L*

$$\Delta t = \frac{L}{\beta_1 c} - \frac{L}{\beta_2 c} = \frac{L}{c} \left[\sqrt{1 + \frac{m_1^2 c^2}{p^2}} - \sqrt{1 + \frac{m_2^2 c^2}{p^2}} \right]$$

With ~100 ps resolution and *L*≈10 m, K/π separation up to few GeV/c
 High particle rates/multiplicities create ambiguities

Examples: ALICE (MRPC), TORCH project (Cherenkov)

Cherenkov radiation

- Generated by charged particle traversing dielectric medium with speed greater than the local phase speed of light
 - Above threshold, a coherent wavefront formed with conical shaped at well-defined angle that depends on index of refraction *n* and particle speed β

$$\cos\theta_c = (1/n\beta)$$

$$\frac{d^2N}{dEdx} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c = \frac{\alpha^2 z^2}{r_e m_e c^2} \left(1 - \frac{1}{\beta^2 n^2(E)} \right) \qquad \qquad \frac{d^2N}{dxd\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) \\ \approx 370 \, \sin^2 \theta_c(E) \, \text{eV}^{-1} \text{cm}^{-1} \qquad (z=1)$$

́β>1∕n

Detecting Cherenkov radiation

- Threshold or Ring Imaging Cherenkov (RICH) detectors
 - RICH: measure Cherenkov angle (extract speed β knowing *n*), combine with momentum *p* to determine particle mass (PID)
- Very small number of generated Cherenkov photons
 - □ Example: energy loss of a β ~1 electron in 1 cm of water (*n*=1.33) as visible photons (λ : 400-700 nm) is ~500 eV (~200 photons)
 - Compare with ~2 MeV ionization loss
 - Need to detect maximum number of photons with best possible angular resolution

 \overline{\xi}_{14} = selex RicH 97937306 negative tracks

Photodetector requirements for PID

- Main requirements for PID detection system
 - Single photon sensitivity
 - High photon detection efficiency (PDE)
 - Quantum efficiency: probability that incident photon generates a photoelectron
 - Collection efficiency: probability that photoelectron starts electron multiplication
 - Low dark count rate or dark current
 - Large area coverage, with high active-area fraction
 - High granularity
 - High-rate capability
 - Timing resolution
 - Reliability and long-term ageing resistance (including radiation hardness)
 - "Affordable" procurement and operating costs
- Detection of photons proceeds in three steps:
 - Incident photons generates primary photoelectron or electron-hole (e-h) pair via the photoelectric/photoconductive effect
 - Number of electrons increased to a detectable level by charge multiplication
 - Secondary electrons produce electric signal

Vacuum-based photon detectors

- Photocathode and electron multiplication stage are in vacuum
 - Typ. enclosed in vessel made of glass, ceramics, metal
- Essentially three types of detectors:
 - Photomultiplier tubes (PMTs)
 - Microchannel plate photomultiplier tubes (MCP-PMTs)
 - Hybrid photodetectors (HPDs)
- Vacuum-based photon detectors are still the primary choice of technology for many applications even 90 years after their invention
 - Their relatively high gain, large area and excellent intrinsic time resolution make PMT, MCP-PMT and HPD the most suitable detectors to equip most Cherenkov-based and ToF detectors used in PID

PhotoMultiplier Tubes (PMTs)

- PMTs have been the most common photodetector in HEP experiments and medical imaging up to recent years
 - Large sensitive area
 - Fast response and timing performance
 - High gain and low noise
- High magnetic fields affect electron trajectories

Wavelength sensitivity

- Sensitive wavelength range determined by photocathode material
 - Usually Cs- and Sb-based compounds such as CsI, CsTe, bialkali (SbRbCs, SbKCs), multialkali (SbNa2KCs), as well as GaAs(Cs), GaAsP, etc.
- Low-wavelength cutoff determined by window material
 - Usually, borosilicate glass for IR to near-UV; fused quartz and sapphire (Al2O3) for UV; MgF2 or LiF for XUV

PMTs: large area coverage

Examples

- Super Kamiokande
 - 11,146 Hamamatsu R3600 (50 cm diameter), 22kton fiducial mass with 40% photocathode coverage
- □ NA62 RICH
 - 1,952 Hamamatsu R7400-U03 PMTs (8 mm effective diameter) arranged in two disks
 - Winston cones for better light collection

Multi-anode PMTs

- Position sensitive PMT: metal channel dynode structure (minimum spatial spread of secondary e⁻) with multiple independent anodes
 - Pioneered for HERA-B, later used in the COMPASS, CLAS12 GlueX and LHCb RICH detectors (planned for CBM)
 - Excellent performance (excellent single photon detection efficiency, very low noise, low cross-talk), best choice for large areas with small B field

Ma-PMTs: large area coverage

- Examples
 - CLAS12 RICH
 - 315 Hamamatsu H12700 (+ 76 H8500), 8 × 8 channels array, 6 × 6 mm² pixels
 - ~1 m² instrumented area (active area ratio 87%)
 - LHCb RICH
 - 2,272 R11265 (R13742, 2.9 × 2.9 mm²) + 768 R12699 (R13743, 6 × 6 mm²), 8 × 8 channels array
 - ~3 m² instrumented area (active area ratio 77% 87%)

LHCb

MicroChannel Plate (MCP) PMTs

- Two-dimensional array of glass capillaries (channels with ~5-25 μm diameter) bundled in parallel in a MCP plate
 - Channel act as continuous dynode
 - Gain depends exponentially on channel length to diameter ratio
- MCP-PMTs
 - Excellent timing resolution (~20 ps r.m.s.)
 - Position resolution depends by anode segmentation
 - Can tolerate random magnetic fields up to 0.1 T and axial fields >1 T
 - □ High gain; collection efficiency ~60%

MCP-PMT recovery time and ageing

MCP-PMT limitations

- Relatively long recovery time per channel
- Short lifetime: ageing due ion feedback (residual gas in the channels) that hit and degrade photocathode
- MCPs widely employed as image intensifiers: so far not so used in HEP
 - Interest increased by need to perform Cherenkov imaging within magnetic spectrometers combined with excellent timing resolution
 - First use of MCP-PMTs on large scale: Time-of-Propagation (TOP) counter (Belle II experiment), and planned PANDA experiment
- MCP-PMT lifetime limited by the integrated anode charge, which leads to a strong QE reduction
 - From 0.2 C/cm² to >35 C/cm² in recent years thanks to ALD

D. Miehling, A. Lehmann et al., NIM A 1049 (2023) 168047

MCP-PMT: large area coverage

- Belle II TOP counter (barrel PID detector)
 - □ 512 Hamamatsu R10754 MCP-PMTs (QE ~30%, time res. ~30 ps r.m.s.)
 - QE degradation at few C/cm² lead to replacement with Life-extended ALD

Recent MCP-PMT developments

- TORCH detector by Photek (LHCb Upgrade)
 - 53×53 mm² prototype with 64 × 64 pads; time resolution <30 ps
 - MCP is ALD coated for lifetime > 5 C/cm^2
- LAPPD (Incom)
 - 20 cm square with internal stripline; capacitively-coupled (CC) with anodes (5mm thick glass or 2mm thick ceramic)
 - HRPPD: 10 cm square with no support structures in window; directly coupled through ceramic anodes (~3mm pixels); capacitively-coupled with 2mm anode
- MCP-PMT with embedded Timepix4 ASIC as anode
 - Complete integration of sensor and electronics (55 µm pixel pitch, 195 ps TDC bin, data driven read-out up to 160 Gbps)
 - On-detector signal processing, digitization and data transmission with large number of active channels (~230 k pixels)

60 mm pitch

T. Blake Pisa Meeting 2024

M. Popecki (Incom)

PD24 Vancouver

Massimiliano Fiorini (Ferrara)

Hybrid Photon Detectors

- HPDs combine the sensitivity of a vacuum PMT with excellent resolutions of a Si sensor
 - Photoelectron accelerated by a potential difference of ~10-20 kV
 - Proximity focusing or focusing (Si sensor smaller than window, high active area ratio)
 - Very high segmentation possible
- Photoelectron detected using:
 - Segmented PIN diode (HPD)
 - Avalanche photodiode (HAPD)
 - Silicon photomultiplier (VSiPMT)
- Employed on a large scale:
 - HPD: RICH1+RICH2 of LHCb (Run 1+2), CMS HCAL
 - HAPD: Aerogel RICH detector of Belle II

HPD/HAPD: large area coverage

- Hybrid Avalanche Photo-Detector (HAPD), Belle II Aerogel RICH
 - 420 HAPDs; 73 × 73 mm², 144 pixels
 4.9 × 4.9 mm², Hamamatsu
 - Gain 7 × 10⁴; works in 1.5 T magnetic field
- LHCb RICH (Run 1 and 2)
 - 484 HPDs for a total area of 3.3 m²
 - □ Low noise 145 e⁻ (signal 5000 e⁻ typ.)
 - Collaboration with Photonis-DEP

Gaseous Photodetectors

- Electron multiplication happens in an avalanche in the high-field region of a gaseous detector (as for gaseous tracking detectors)
 - Photoelectrons generated either on a photosensitive component of the gas mixture or on a solid photocathode material
 - Cathodes can be structured in pads of few mm size \rightarrow position-sensitive
 - Can cover large areas (several m²), operate in high magnetic fields, and are relatively inexpensive
 - Drawback: sensitive only in the UV
- Examples: ALICE, COMPASS, Hades, JLAB-Hall A

Solid State Photon Detectors

- Production and detection of photoelectrons in the same thin material
- Very low levels of light detection (single photon) possible with Avalanche Photo Diode (APD) operated in Geiger mode
 - Silicon Photomultiplier (SiPM)
- Many interesting features:
 - □ High gain (~10⁶)
 - Excellent single photon separation
 - Good granularity
 - Could use micro-lenses to increase active area
 - Excellent time resolution
 - Insensitive to magnetic fields
 - Low voltage operation
- Drawbacks:
 - □ High dark count rate (DCR), typ. ~100 kHz/mm²
 - Very sensitive to neutrons and ionizing particles

SiPM timing resolution

- Single Photon Timing Resolution (SPTR)
 - Extract "intrinsic" SiPM contribution
- SPTR is position-dependent
 - Worse at the edges due to low electric field
 - Possible solutions: masking/microlensing
- Worse SPTR for larger cells
- Analog single SPAD SPTR below 20 ps (FWHM)
 - $40 \ \mu m^2$ cell if masked (~30 ps not masked)

S. Gundacker et al.

PD24 Vancouver

SPTR FWHM (ps) vs Laser position (mm)

SiPM radiation hardness

10⁸

SensL MicroFC-SMTPA-10020

- DCR highly depends on temperature and irradiation
- Can be mitigated by cooling (and annealing)

Digital SiPM

- Digital SiPM (or "CMOS SPAD") chips combines SPAD and transistors on the same chip
- Advantages
 - Can switch off individual noisy cells
 - Integrated read-out
 - Large signal from single SPAD (low power readout)
 - <100 μm spatial resolution easy to achieve
 - Excellent timing performance (<10 ps FWHM)
 - CMOS mass production technology

P. Fischer

PD24 Vancouver

SiPM: large area coverage

- SiPM are widespread in HEP and neutrino physics experiments
 - Most common application to detect scintillation light (calorimeters, SciFi)
- RICH detector based on SiPM (in a running experiment) not realized so far
 - Pioneering work during Belle II Upgrade studies (S. Korpar, P. Krizan)
- Many potential users:
 - Belle II; LHCb RICH Upgrade 2; RICH for SuperCharm-Tau factory; ALICE3; EIC RICH; etc.
- Dual RICH (dRICH) detector for ePIC
 - □ 4 × SiPMs matrix Hamamatsu 8 × 8 S13361
 - Read-out board with front-end chip and FPGA, and cooling
 - Advanced design and prototype tests

P. Antonioli, R. Preghenella, L. Rignanese

Massimiliano Fiorini (Ferrara)

Conclusions

- The next generation of particle physics experiments requires single-photon detectors with ever increasing performance
 - Excellent timing resolution
 - Increased granularity and number of channels
 - Wider spectral range
 - Improved radiation hardness
- Many exciting developments underway, in particular on SiPMs and MCP-PMTs
 - Not all of them could be covered in this talk
- A detector R&D collaboration (DRD4) has been recently formed to facilitate collaboration in this area of research
 - See next slides

The DRD4 Collaboration: R&D on photon detectors and PID techniques

Massimiliano Fiorini

(INFN and University of Ferrara)

University of Ferrara

6th International Workshop on New Photon-Detectors (PD24) Vancouver, 19-22 November 2024

DRD4 organization

- DRD4: international Collaboration with CERN as host laboratory
 - Approved by the CERN Research Board in December 2023
- Main goal: bundle and boost R&D activities in photodetector technology and Particle Identification (PID) techniques for future HEP experiments and facilities
- To be more specific, DRD4 covers the following topics:
 - Single-photon sensitive photodetectors (vacuum, solid state, hybrid)
 - PID techniques (Cherenkov based, Time of Flight)
 - Scintillating Fiber (SciFi) tracking
 - Transition Radiation (TR) using solid state X-ray detectors
- DRD4 structure initially defined in the <u>Proposal document</u>
 - 6 Working Groups (WGs) reflecting the main areas of R&D
 - Scientific forums for discussion: no agreed tasks, no committed resources
 - Facilitate exchange of information, know-how, samples, infrastructure, etc.
 - 5 Work Packages (WPs) reflecting the main ECFA roadmap themes and goals
 - Run like projects: divided in tasks, with agreed goals, milestones, deliverables, and are jointly funded by the resources of the participants

DRD4 activities

- 74 institutes joined DRD4 at the time of Proposal
 - Additional institutes joined later (2 in January, 1 in June, 4 in October)
 - 20 nationalities
 - Many small groups, many with no prior experience in large R&D collaborations
 - Large effort to constitute a collaborative effort amongst a research community that has not traditionally worked together in the recent past
 - Industrial partners (very important asset)
- DRD4 scientific activities ramped up since the beginning of 2024: many scientific and technological discussions
 - See <u>Indico</u> pages for more details
 - These meetings allow building our community, enabling discussion of activities and the spread of information
- Future Collaboration meetings at CERN
 - □ 7-11 April 2025; 13-17 October 2025

DRD4 collaboration

- New groups are welcome to join DRD4
 - □ For more information: <u>https://drd4.web.cern.ch</u>
 - Many PD24 participants are already part of the DRD4 community
 - If interested, please <u>contact us</u> (or simply <u>subscribe</u> to the "drd4-interested" list to be informed about ongoing activities)

Group photo at the DRD4 Constitutional meeting (CERN, January 2024)

Social dinner (DRD4 Collaboration meeting at CERN, October 2024)