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Particle Identification (PID) in HEP 
◼ PID in HEP experiments is of great importance

❑ PID techniques based particles detection via their interaction with matter: 
ionization and excitation (Cherenkov & Transition Radiation)

❑ In addition to momentum measurement (magnetic spectrometer), we need 
other information (e.g. velocity, etc.) to determine PID

◼ Applicable methods strongly depend on particle momentum (velocity)
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Time-of-Flight (ToF) detectors
◼ Extract the velocity from time difference Δt for two particles of known 

momentum p between the signals of two (usually scintillation or gas) 
counters at a known distance L

❑ With ~100 ps resolution and L≈10 m, K/π separation up to few GeV/c

❑ High particle rates/multiplicities create ambiguities 

◼ Examples: ALICE (MRPC), TORCH project (Cherenkov)
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Cherenkov radiation
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◼ Generated by charged particle traversing dielectric 
medium with speed greater than the local phase 
speed of light

❑ Above threshold, a coherent wavefront formed with 
conical shaped at well-defined angle that depends on 
index of refraction n and particle speed β

◼ Number of photons produced per unit path length per 
unit energy/wavelength interval of the photon

S. Gambetta



Detecting Cherenkov radiation
◼ Threshold or Ring Imaging Cherenkov (RICH) detectors

❑ RICH: measure Cherenkov angle (extract speed β knowing n), combine with 
momentum p to determine particle mass (PID)

◼ Very small number of generated Cherenkov photons

❑ Example: energy loss of a β~1 electron in 1 cm of water (n=1.33) as visible 
photons (λ: 400-700 nm) is ~500 eV (~200 photons)

◼ Compare with ~2 MeV ionization loss

❑ Need to detect maximum number of photons with best possible angular 
resolution
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Photodetector requirements for PID
◼ Main requirements for PID detection system

❑ Single photon sensitivity

❑ High photon detection efficiency (PDE)

◼ Quantum efficiency: probability that incident photon generates a photoelectron

◼ Collection efficiency: probability that photoelectron starts electron multiplication

❑ Low dark count rate or dark current

❑ Large area coverage, with high active-area fraction 

❑ High granularity

❑ High-rate capability

❑ Timing resolution

❑ Reliability and long-term ageing resistance (including radiation hardness)

❑ “Affordable” procurement and operating costs

◼ Detection of photons proceeds in three steps:

❑ Incident photons generates primary photoelectron or electron-hole (e-h) pair 
via the photoelectric/photoconductive effect

❑ Number of electrons increased to a detectable level by charge multiplication 

❑ Secondary electrons produce electric signal 
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Vacuum-based photon detectors
◼ Photocathode and electron multiplication stage are in vacuum

❑ Typ. enclosed in vessel made of glass, ceramics, metal

◼ Essentially three types of detectors: 

❑ Photomultiplier tubes (PMTs)

❑ Microchannel plate photomultiplier tubes (MCP-PMTs) 

❑ Hybrid photodetectors (HPDs)

◼ Vacuum-based photon detectors are still the primary choice of 
technology for many applications even 90 years after their invention 

❑ Their relatively high gain, large area and excellent intrinsic time resolution 
make PMT, MCP-PMT and HPD the most suitable detectors to equip most 
Cherenkov-based and ToF detectors used in PID
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PhotoMultiplier Tubes (PMTs)
◼ PMTs have been the most common photodetector in HEP experiments 

and medical imaging up to recent years

❑ Large sensitive area

❑ Fast response and timing performance

❑ High gain and low noise

◼ High magnetic fields affect electron trajectories
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Wavelength sensitivity
◼ Sensitive wavelength range determined by photocathode material

❑ Usually Cs- and Sb-based compounds such as CsI, CsTe, bialkali (SbRbCs, 
SbKCs), multialkali (SbNa2KCs), as well as GaAs(Cs), GaAsP, etc.

◼ Low-wavelength cutoff determined by window material 

❑ Usually, borosilicate glass for IR to near-UV; fused quartz and sapphire 
(Al2O3) for UV; MgF2 or LiF for XUV
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PMTs: large area coverage
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◼ Examples

❑ Super Kamiokande

◼ 11,146 Hamamatsu R3600 (50 cm 
diameter), 22kton fiducial mass with 40% 
photocathode coverage

❑ NA62 RICH

◼ 1,952 Hamamatsu R7400-U03 PMTs (8 
mm effective diameter) arranged in two 
disks

◼ Winston cones for better light collection

NA62 RICH

Super Kamiokande



Multi-anode PMTs
◼ Position sensitive PMT: metal channel dynode structure (minimum 

spatial spread of secondary e-) with multiple independent anodes

❑ Pioneered for HERA-B, later used in the COMPASS, CLAS12 GlueX and 
LHCb RICH detectors (planned for CBM)

❑ Excellent performance (excellent single photon detection efficiency, very low 
noise, low cross-talk), best choice for large areas with small B field
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Ma-PMTs: large area coverage
◼ Examples

❑ CLAS12 RICH

◼ 315 Hamamatsu H12700 (+ 76 H8500), 8×8 channels 
array, 6×6 mm2 pixels 

◼ ~1 m2 instrumented area (active area ratio 87%)

❑ LHCb RICH

◼ 2,272 R11265 (R13742, 2.9×2.9 mm2) + 768 R12699 
(R13743, 6×6 mm2), 8×8 channels array

◼ ~3 m2 instrumented area (active area ratio 77% - 87%)

PD24 Vancouver Massimiliano Fiorini (Ferrara)12

H12700

LHCb

CLAS12



MicroChannel Plate (MCP) PMTs
◼ Two-dimensional array of glass capillaries (channels with ~5-25 μm 

diameter) bundled in parallel in a MCP plate

❑ Channel act as continuous dynode

❑ Gain depends exponentially on channel length to diameter ratio

◼ MCP-PMTs

❑ Excellent timing resolution (~20 ps r.m.s.)

❑ Position resolution depends by anode segmentation

❑ Can tolerate random magnetic fields up to 0.1 T and axial fields >1 T

❑ High gain; collection efficiency ~60%
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MCP-PMT recovery time and ageing
◼ MCP-PMT limitations

❑ Relatively long recovery time per channel

❑ Short lifetime: ageing due ion feedback 
(residual gas in the channels) that hit and 
degrade photocathode

◼ MCPs widely employed as image 
intensifiers: so far not so used in HEP

❑ Interest increased by need to perform 
Cherenkov imaging within magnetic 
spectrometers combined with excellent 
timing resolution

❑ First use of MCP-PMTs on large scale: 
Time-of-Propagation (TOP) counter (Belle 
II experiment), and planned PANDA 
experiment

◼ MCP-PMT lifetime limited by the 
integrated anode charge, which leads to 
a strong QE reduction

❑ From 0.2 C/cm2 to >35 C/cm2 in recent 
years thanks to ALD
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MCP-PMT: large area coverage
◼ Belle II TOP counter (barrel PID detector)

❑ 512 Hamamatsu R10754 MCP-PMTs (QE ~30%, time res. ~30 ps r.m.s.)

❑ QE degradation at few C/cm2 lead to replacement with Life-extended ALD

15

16 PMTs x 2 rows 
per module
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Recent MCP-PMT developments
◼ TORCH detector by Photek (LHCb Upgrade)

❑ 53×53mm2 prototype with 64×64 pads; time resolution <30 ps

❑ MCP is ALD coated for lifetime > 5 C/cm2

◼ LAPPD (Incom)

❑ 20 cm square with internal stripline; capacitively-coupled (CC) 
with anodes (5mm thick glass or 2mm thick ceramic)

❑ HRPPD: 10 cm square with no support structures in window;  
directly coupled through ceramic anodes (~3mm pixels); 
capacitively-coupled with 2mm anode

◼ MCP-PMT with embedded Timepix4 ASIC as anode

❑ Complete integration of sensor and electronics (55 μm pixel pitch, 
195 ps TDC bin, data driven read-out up to 160 Gbps)

❑ On-detector signal processing, digitization and data transmission 
with large number of active channels (~230 k pixels)

PD24 Vancouver Massimiliano Fiorini (Ferrara)16

T. Blake Pisa Meeting 2024

M. Popecki (Incom)
M. Fiorini Pisa Meeting 2024



Hybrid Photon Detectors
◼ HPDs combine the sensitivity of a 

vacuum PMT with excellent resolutions 
of a Si sensor 

❑ Photoelectron accelerated by a potential 
difference of ~10-20 kV 

❑ Proximity focusing or focusing (Si sensor 
smaller than window, high active area 
ratio)

❑ Very high segmentation possible

◼ Photoelectron detected using:

❑ Segmented PIN diode (HPD)

❑ Avalanche photodiode (HAPD)

❑ Silicon photomultiplier (VSiPMT)

◼ Employed on a large scale:

❑ HPD: RICH1+RICH2 of LHCb (Run 1+2), 
CMS HCAL

❑ HAPD: Aerogel RICH detector of Belle II
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HPD/HAPD: large area coverage
◼ Hybrid Avalanche Photo-Detector 

(HAPD), Belle II Aerogel RICH

❑ 420 HAPDs; 73×73 mm2, 144 pixels 
4.9×4.9 mm2, Hamamatsu

❑ Gain 7×104; works in 1.5 T magnetic 
field

◼ LHCb RICH (Run 1 and 2)

❑ 484 HPDs for a total area of 3.3 m2

❑ Low noise 145 e- (signal 5000 e- typ.)

❑ Collaboration with Photonis-DEP
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Gaseous Photodetectors
◼ Electron multiplication happens in an avalanche in the high-field region 

of a gaseous detector (as for gaseous tracking detectors)

❑ Photoelectrons generated either on a photosensitive component of the gas 
mixture or on a solid photocathode material 

❑ Cathodes can be structured in pads of few mm size → position-sensitive

❑ Can cover large areas (several m2), operate in high magnetic fields, and are 
relatively inexpensive

❑ Drawback: sensitive only in the UV

◼ Examples: ALICE, COMPASS, Hades, JLAB-Hall A
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Solid State Photon Detectors
◼ Production and detection of photoelectrons in the same thin material

◼ Very low levels of light detection (single photon) possible with 
Avalanche Photo Diode (APD) operated in Geiger mode

❑ Silicon Photomultiplier (SiPM)

◼ Many interesting features:

❑ High gain (~106)

❑ Excellent single photon separation 

❑ Good granularity

❑ Could use micro-lenses to increase active area

❑ Excellent time resolution

❑ Insensitive to magnetic fields

❑ Low voltage operation

◼ Drawbacks:

❑ High dark count rate (DCR), typ. ~100 kHz/mm2

❑ Very sensitive to neutrons and ionizing particles
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SiPM timing resolution
◼ Single Photon Timing Resolution (SPTR)

❑ Extract “intrinsic” SiPM contribution

◼ SPTR is position-dependent 

❑ Worse at the edges due to low electric field

❑ Possible solutions: masking/microlensing

◼ Worse SPTR for larger cells

◼ Analog single SPAD SPTR below 20 ps (FWHM)

❑ 40 μm2 cell if masked (~30 ps not masked)

PD24 Vancouver Massimiliano Fiorini (Ferrara)21

Uniform illumination

S. Gundacker et al.



SiPM radiation hardness
◼ DCR highly depends on temperature and irradiation

◼ Can be mitigated by cooling (and annealing)

PD24 Vancouver Massimiliano Fiorini (Ferrara)22

Liquid nitrogen (77 K)

1011 neq/cm2

non irradiated

1012 neq/cm2

1013 neq/cm2

M. Calvi NIM A 952 (2020) 161788

-30°C, after annealingHamamatsu S13360-1350CS, -30°C



Digital SiPM
◼ Digital SiPM (or “CMOS SPAD”) chips combines SPAD and transistors 

on the same chip

◼ Advantages

❑ Can switch off individual noisy cells

❑ Integrated read-out 

❑ Large signal from single SPAD (low power readout)

❑ <100 μm spatial resolution easy to achieve

❑ Excellent timing performance (<10 ps FWHM)

❑ CMOS mass production technology
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SiPM: large area coverage
◼ SiPM are widespread in HEP and 

neutrino physics experiments

❑ Most common application to detect 
scintillation light (calorimeters, SciFi)

◼ RICH detector based on SiPM (in a 
running experiment) not realized so far

❑ Pioneering work during Belle II Upgrade 
studies (S. Korpar, P. Krizan)

◼ Many potential users:

❑ Belle II; LHCb RICH Upgrade 2; RICH for 
SuperCharm-Tau factory; ALICE3; EIC 
RICH; etc.

◼ Dual RICH (dRICH) detector for ePIC

❑ 4× SiPMs matrix Hamamatsu 8×8 S13361

❑ Read-out board with front-end chip and 
FPGA, and cooling

❑ Advanced design and prototype tests

PD24 Vancouver Massimiliano Fiorini (Ferrara)24

F. Simon, NIMA 926 (2019) 85-100

P. Antonioli, R. Preghenella, L. Rignanese



Conclusions
◼ The next generation of particle physics experiments requires 

single-photon detectors with ever increasing performance

❑ Excellent timing resolution 

❑ Increased granularity and number of channels

❑ Wider spectral range 

❑ Improved radiation hardness

◼ Many exciting developments underway, in particular on SiPMs
and MCP-PMTs

❑ Not all of them could be covered in this talk

◼ A detector R&D collaboration (DRD4) has been recently formed 
to facilitate collaboration in this area of research

❑ See next slides
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DRD4 organization
◼ DRD4: international Collaboration with CERN as host laboratory

❑ Approved by the CERN Research Board in December 2023

◼ Main goal: bundle and boost R&D activities in photodetector 
technology and Particle Identification (PID) techniques for future HEP 
experiments and facilities

◼ To be more specific, DRD4 covers the following topics:

❑ Single-photon sensitive photodetectors (vacuum, solid state, hybrid)

❑ PID techniques (Cherenkov based, Time of Flight)

❑ Scintillating Fiber (SciFi) tracking 

❑ Transition Radiation (TR) using solid state X-ray detectors 

◼ DRD4 structure initially defined in the Proposal document

❑ 6 Working Groups (WGs) reflecting the main areas of R&D

◼ Scientific forums for discussion: no agreed tasks, no committed resources

◼ Facilitate exchange of information, know-how, samples, infrastructure, etc.

❑ 5 Work Packages (WPs) reflecting the main ECFA roadmap themes and goals

◼ Run like projects: divided in tasks, with agreed goals, milestones, 
deliverables, and are jointly funded by the resources of the participants
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DRD4 activities
◼ 74 institutes joined DRD4 at the time of Proposal

❑ Additional institutes joined later (2 in January, 1 in June, 4 in October)

❑ 20 nationalities

❑ Many small groups, many with no prior experience in large R&D 
collaborations

❑ Large effort to constitute a collaborative effort amongst a research 
community that has not traditionally worked together in the recent past

❑ Industrial partners (very important asset) 

◼ DRD4 scientific activities ramped up since the beginning of 2024: 
many scientific and technological discussions
❑ See Indico pages for more details

❑ These meetings allow building our community, enabling discussion of 
activities and the spread of information

◼ Future Collaboration meetings at CERN

❑ 7-11 April 2025; 13-17 October 2025
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DRD4 collaboration
◼ New groups are welcome to join DRD4

❑ For more information: https://drd4.web.cern.ch

❑ Many PD24 participants are already part of the DRD4 community

❑ If interested, please contact us (or simply subscribe to the “drd4-interested” 
list to be informed about ongoing activities)
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