

Extracting high performance of energy information in photoncounting Computed Tomography

Ryotaro Minagawa¹

T. Ro¹, J. Kataoka¹, M. Arimoto², H. Kawashima², S. Kobayashi², K. Okumura², T. Tomoda², F. Lucyana², M. Oshima², Y. Furuta², D. Sato³, S.Terazawa⁴, S. Shiota⁴

¹Waseda University, ²Kanazawa University, ³Tohoku University, ⁴Proterial Ltd.

Outline

□ Introduction

- Conventional CT
- Photon-counting CT (PCCT)

□ Raise a problem of PCCT (energy information)

- **D** Experiment using our PCCT system
- Provide new correction method for CT values

Discussion about method and usability for PCCT

Conclusion

Conventional CT

Use <u>energy-integrated</u> detector GOS scintillator + Photodiode

✓ Long decay time of GOS (≿ µs)
 ✓ High intensity of X-ray (~10⁷⁻⁸ Hz/mm²)

 \Rightarrow <u>X-ray signals pile up</u>

Readout mode : **current mode** Integrate X-ray signal

This leads to ...

Lack of energy information = monochromatic image

✓ Require high radiation dose

Photon-counting CT (PCCT) Use photon-counting detector

Readout mode : **pulse mode** Set multiple energy thresholds

- ✓ Signals can be discriminated by energy bands (energy-resolved image)
 ⇒ Spectral analysis O
- ✓ Cut dark current noise
 ⇒ SNR up
 - ⇒ Reduce radiation dose

Photon-counting detector (PCD)

- ✓ Semiconductor detector
 Mainly researched as PCD (CdTe, CZT)
- O High energy resolution
- \triangle Expensive
- \triangle Need to make pixels very small (high rate of X-ray)

(cf.) NAEOTOM Alpha (Siemens Healthineer) ... CdTe

✓ Scintillation detector

- \triangle Low energy resolution
- O Reduce total cost
- O No need complex system
- O Compatible with conventional CT system

Our group : develop scintillation-based PCCT

Simple & Reasonable PCCT system

PCCT system

Our PCCT system

✓ Fast scintillator + MPPC detector

YGAG scintillator (ceramic)

- Decay time : ~ 70 ns
- Luminescence : 36000 photon/MeV
- Density : 5.38 g/cm³
- Thickness : 1 mm

MPPC (SiPM)

- Internal gain : ~ 10^6
- Time response : ~ 10 ns
- \cdot Effective sensitive area : 1 \times 1 mm^2
- Pixel pitch : 15 µm

PCCT system

Bioimaging examples using our PCCT system

Pre injection

30 min after injection

2 hours after injection

D.Sato et al. 2023

Confirmed iodine accumulation in bladder from in-vivo imaging using our system

Whether PCCT images can be acquired from individual energy bands as expected?

<u>Study about detection spectrum (CdTe detector)</u> initial energy of X-ray photons counted in each energy bin

R.Symons et al. (2007)

Whether PCCT images can be acquired from individual energy bands as expected?

<u>Study about detection spectrum (CdTe detector)</u> initial energy of X-ray photons counted in each energy bin

R.Symons et al. (2007)

Spectrum separation between energy bins is not perfect (low-energy bands)

Experiment

Same problem in our PCCT system?

[Experimental setup in our system]

YGAG scintillator + MPPC

【Condition】 Tube voltage: 140kV Tube current: 0.5mA Exposure time: 500ms

[Phantom] Advanced Electron Density Phantom (CaCO₃ 50%)

Result

Underestimate CT values in low-energy bands

Result

Underestimate CT values in low-energy bands

Main reasons about deviation of CT values ... escape, scatter events \Rightarrow correct the counts of photons

[Correction method]

① prepare photon count table

Main reasons about deviation of CT values…escape, scatter events ⇒ correct the counts of photons

```
[Correction method]
```

1 prepare photon count table

✓ Using Geant4 simulation

Inject monochromatic energy (30-140keV) ⇒ Make <u>count table</u>

Measured energy bin count

(e.g.) injection energy = 100 keV

Main reasons about deviation of CT values…escape, scatter events ⇒ correct the counts of photons

[Correction method]

① prepare photon count table

Correction 1st cycle

Main reasons about deviation of CT values…escape, scatter events ⇒ correct the counts of photons

[Correction method]

① prepare photon count table

Correction 2nd cycle

Correction result

Applied this correction method to measured CT data

Improve contrast of CT images in low-energy bands

Correction result

Applied this correction method to measured CT data

Improve the accuracy of CT values in low-energy bands ⇒ This method is effective

Correction result

The benefit of this correction method

✓ It can be also applied for semiconductor detector

only based on physics (= independent of the type of PCD, phantoms)

✓ It can broaden usability of "accurate" energy information of PCCT

Some studies have suggested... Low-energy images in PCCT has high performance

Contribute to clinical uses of low-energy information (iodine contrast-enhancement examination etc.)

Conclusion

- Confirmed inaccuracy of low-energy PCCT data
- Improved image contrast & CT values applying our correction method
- Provide the possibility of medical applications of PCCT energy information with high accuracy

Future works

• Expand detector area (2D)

-

Concentration estimation

(e.g.) Concentration map lodine 10mg/mL AuNP 10mg/mL

Ex-vivo imaging using our PCCT system

Liver and spleen of mouse (Gd agents injected)

3D reconstruction

Bioimaging examples using our PCCT system

Pre injection

30 min after injection

2 hours after injection

D.Sato et al. 2023

Confirmed Iodine accumulation in bladder from in-vivo imaging using our system

Previous study

PCCT : NAEOTOM Alpha (Siemens Healthineers) DECT : SOMATOM Force (Siemens Healthineers)

Image (a) : VMI 40keV for PCCT Image (d) : VMI 40keV for DECT

H. Kawashima et al. 2024

-

Low-energy count

Inject 100 keV X-ray (monochromatic)

16000₁

Detection spectrum

um

525785

85.23

Entries

Mean

Count table format (image)

Injection	energy	(true)
-----------	--------	--------

			Inaccurate count					
		Total count	Vth0	Vth1	Vth2	Vth3	Vth4	Vth5
	Vth0	X(0)						
	Vth1	X(1)	A(1, 0)					
e)	Vth2	X(2)	A(2, 0)	A(2, 1)				
	Vth3	X(3)	A(3, 0)	A(3, 1)	A(3, 2)			
	Vth4	X(4)	A(4, 0)	A(4, 1)	A(4, 2)	A(4, 3)		
	Vth5	X(5)	A(5, 0)	A(5, 1)	A(5, 2)	A(5, 3)	A(5, 4)	

Corrected count (cycle, Vth) = measured count (cycle) \times A(cycle, Vth) / X (Vth)

Correction factor

(e.g.) 1st cycle correction Corrected count (1, 0) = measured count (0) \times A (5, 0) / X (5) Corrected count (1, 1) = measured count (1) \times A (5, 1) / X (5) ...

Detector specification

	Decay time (ns)	Luminescence (photon/MeV)	Density (g/cm ³)	Effective atomic number
GOS	3000	50000	7.34	32.0
YGAG	70	36000	5.38	25.8
GAGG	100	56000	6.70	21.8
LYSO	40	30000	7.10	27.4

-

Detector specification

	μτ (electron) (cm²/V)	μτ (hole) (cm²/V)	Density (g/cm ³)	Effective atomic number
CdTe	3.3×10 ⁻³	2×10 ⁻⁴	5.85	50.0
CdZnTe	3×10 ⁻³	$5 imes10^{-4}$	5.80	43.3

detector	Energy resolution
CdTe	3% @662keV
CdZnTe	7% @140keV
GOS	10% @662keV
YGAG	40% @60keV
GAGG	8% @662keV
LYSO	11% @662keV

Beam hardening effect

BH weak

BH strong

Low-energy X-ray tend to be attenuated well (not so penetrate)

Effective energy of X-ray spectrum increase after transportation

Simulation study

Incident X-ray follows $\propto E^{-1}$ (cf. Endo et al. (1997))

Also confirmed the effectiveness in simulation

Drug Delivery System (DDS)

therapeutic approach that selectively delivers drugs to the diseased tissue or area in the body for targeted action

Experimental setup (in detail)

Radiation dose

Compared to conventional CT... Total radiation dose \Rightarrow 1/10 ~ 1/15

(e.g.) sinus CT scan

↓ Conventional CT

PCCT→

Article from Tokai University (2022)

<u>副鼻腔**低線量**</u>

- ✓ Sn100kV
 ✓ CTDIvol 0.38mGy
 ✓ DLP 7.23mGycm
 ✓ Pitch 0.85
 ✓ r/t 0.5sec
 ✓ Thickness 1mm
- > 0.015183 mS

Table 1 Dose results of CT protocols used in this national survey on CT radiation doses

Protocol name	Clinical indication	Relative frequency (%)	Median scan range (mm)	Median (P75) DLP (mGy cm)	Median (P75) E ₁₀₃ (mSv)	Ratio max/ min E
Brain	Haemorrhage	23.8	155	813.7 (935.6)	1.5 (1.8)	3.3
Sinus	Sinusitis	9.0	116	105.7 (133.4)	0.2 (0.3)	4.9
Neck	Standard	2.3	252	329.9 (404.3)	1.7 (2.1)	2.2
Neck-thorax-abdomen	Standard	0.7	880	985.1 (1,117.6)	13.8 (15.6)	1.7
Thorax	Standard	6.6	313	320.0 (346.5)	4.6 (5.0)	2.8
Thorax-liver	Lung cancer	4.1	401	542.0 (608.1)	8.1 (9.1)	2.7
				A.	J. van der M	olen et al. 2

LSI specification

M.Arimoto et al. (2023)

-

parameters	
channel	64 ch
Operation voltage	±1.65 V
Power consumption	~230 mW
Dynamic range	0 - 0.8 V
Non-linearity	~1.3 %
Rate tolerance	~a few MHz/ch

DAQ performance

Observed output waveform

M.Arimoto et al. (2023)

Signal linearity performance (test pulse)

DAQ performance

M.Arimoto et al. (2023)

□ Measured linearity performance (change load capacitance)

DAQ performance

M.Arimoto et al. (2023)

Pedestal distribution

System performance

Count rate tolerance

M.Arimoto et al. (2023)

Only LSI (using high-speed function generator)

Dead time ~ 10 ns \Rightarrow ~ 100 MHz

System performance

□ Photo peak distribution

M.Arimoto et al. (2023)

Energy resolution distribution

Energy resolution = $40.5 \pm 1.5\%$

MPPC specification

parameters	
Fill factor	83%
Window	Ероху
Reflective index	1.59
Peak sensitivity wave length	460nm
Photo detection efficiency	32%
Dark current rate	120kcps
Crosstalk probability	<1%
Terminal capacitance	60pF

Dual-energy CT (DECT)

Acquire two energy information

Type of DECT

- \cdot dual source
- kV-switching
- dual layer etc.

✓ Overlapping energy spectrum

✓ Only two CT values for material decomposition

Photon-counting detector (PCD)

 ✓ Semiconductor detector mainly researched as PCD (CdTe, CZT)

(cf.) NAEOTOM Alpha (Siemens Healthineer) ... CdTe

O high energy resolution

riangle Expensive

 \triangle Need to make pixels very small (high rate of X-ray)

In PCCT...

Set many energy bands

- \Rightarrow insufficient photon counts in each band
- ⇒ statistical image noise (quality down)

Our group : develop scintillation-based PCCT

Dual-layer PCCT system

① Optimize the thickness balance between front and rear (simulation)

Thickness condition : front + rear = 4.0mm

Effective energy in front and rear

The nearest plot from "dual energy" = front 0.5mm & rear 3.5mm (best balance)

Dual-layer PCCT system

② Investigate the accuracy of CT values

The accuracy in high-energy acquired from rear is better than front

In rear spectrum, inaccurate component is contaminated in low-energy bands

Dual-layer PCCT system

Experimental setup

Front scan (front view)

Rear scan (front view)

Rear scan (side view) In the case of "Rear scan"

Dual-layer PCCT system

✓ Sub pixel shift CT scan

Hole size (diameter) 3.0, 2.5, 2.0, 1.5, 1.0 mm

-