

SiPM readout plane for the ePIC dual-radiator RICH at the EIC

Roberto Preghenella INFN Bologna

The 6th International Workshop on new Photon-Detectors 19 – 21 November 2024, Vancouver

preghenella@bo.infn.it

The Electron-Ion Collider

a machine that will unlock the secrets of the strongest force in Nature is a future electron-proton and electron-ion collider at BNL (USA) foreseen to start operation in early 2030's

- the major US project in the field of nuclear physics
 - one of the most important scientific facilities for the future of nuclear and subnuclear physics

• the world's first collider for

- polarised electron-proton (and light ions)
- electron-nucleus collisions

• will allow to explore the secrets of QCD

- \circ understand origin of mass & spin of the nucleons
- extraordinary 3D images of the nuclear structure

Particle identification at the EIC

one of the major challenges for the detector

• physics requirements

- pion, kaon and proton ID
- over a wide range $|\eta| \le 3.5$
- \circ with better than 3σ separation
- significant pion/electron suppression

• momentum-rapidity coverage

- forward: up to 50 GeV/c
- central: up to 6 GeV/c
- backward: up to 10 GeV/c

demands different technologies

The ePIC experiment

layout of the barrel detector

tracking

- new 1.7 T magnet 0
- Si-MAPS + MPGDs Ο

calorimetry

- e-side: PbWO₄ EMCal 0
- barrel: imaging EMCal 0
- h-side: finely segmented Ο
- outer barrel HCal Ο

particle ID

0

- AC-LGAD TOF 0
- pfRICH Ο

hpDIRC Ο

dRICH

hadrons

8.5 m

The dual-radiator (dRICH) for forward PID at EIC

compact and cost-effective solution for broad momentum coverage at forward rapidity

- radiators: aerogel (n ~ 1.02) and C₂F₆ (n ~ 1.0008)
- **mirrors:** large outward-reflecting, 6 open sectors
- Sensors: 3x3 mm² pixel, ~ 3 m² of photodetectors
 - single-photon detection inside high B field (~ 1 T)
 - outside of acceptance, reduced constraints
 - SiPM optical readout

p = [3.0, 50] GeV/c η = [1.5, 3.5] e-ID up to 15 GeV/c

SiPM option and requirements for RICH optical readout

pros

- cheap Ο
- high photon efficiency Ο requirement
- excellent time resolution Ο requirement
- insensitive to magnetic field Ο requirement

cons

large dark count rates

not radiation tolerant

technical solutions and mitigation strategies Cooling ▲ timing

Si

786.5

annealing

Studies of radiation damage on SiPM

INFŃ

High-temperature annealing recovery

similar observation with various types of Hamamatsu sensors

8

"Online" self-induced annealing

thermal studies for "in-situ" SiPM recovery sensors heated with up to 1 W power/sensor

coloured brackets is the RMS

9

detector integration and electronics

Photodetector unit

conceptual design of PDU layout

SiPM sensor matrices mounted on carrier PCB board

- 4x 64-channel SiPM array device (256 channels) for each unit
 - need modularity to realise curved readout surface
- 1248 photodetector units for full dRICH readout
 - 4992 SiPM matrix arrays (8x8)
 - 319488 readout channels

ÍNFŇ

ALCOR ASIC: integrated front-end and TDC

developed by INFN-TO

64-pixel matrix mixed-signal ASIC current versions (v1,v2,v2.1) have 32 channels, wirebonded final version will have 64 channels, BGA package, 394.08 MHz clock

• the chip performs

- signal <u>amplification</u>
- conditioning and event <u>digitisation</u>

• each pixel features

- 2 leading-edge discriminators
- <u>4 TDCs</u> based on analogue interpolation
 - <u>20 or 40 ps LSB</u> (@ 394 MHz)
- digital shutter to enable TDC digitisation
 - suppress out-of-gate DCR hits
 - 1-2 ns timing window
 - programmable delay, sub ns accuracy

• single-photon time-tagging mode

- <u>continuous readout</u>
- also with Time-Over-Threshold

fully digital output

8 LVDS TX data links

INFŇ

Timing performance measurements with ALCOR

detector prototype and beam tests

successful beam test with prototype SiPM photodetector units (CERN-PS, ended on 18th October)

INFŃ

20

Upgraded in 2024 with 2k channels

Hamamatsu S13360-3050/3075 8x8 MPPC arrays

fully-equipped, 2048-channels SiPM readout surface with cooling and TDC electronics

another successful beam test with prototype SiPM photodetector units (CERN-PS, ended on 5th June)

4x SiPM matrix arrays (256 channels)

unfortunately one ASIC chip (32 ch) had some front-end problems

22

Beam momentum scan

positive particles, aerogel only

something went wrong with the beam configuration for 9 GeV (that's a pity, data seems not good)

reconstructed ring radius at 8 GeV/c beam momentum

Interplay between aerogel and gas radiators

gas ring tags pions, at 10 GeV/c kaons and protons are below C₂F₆ gas threshold

24

Summary

dRICH SiPM option fulfills dRICH requirements

- magnetic field limitations
- excellent timing and efficiency

• technical solutions to mitigate radiation damage

- low temperature operation
- o online "in-situ" self-annealing
- extend lifetime of good detector performance for Physics
 - present solutions can be optimised/improved to extend it further

• SiPM readout with full electronics chain

- based on ALCOR ASIC
- successful beam tests at CERN-PS in 2022, 2023 and 2024
- overall 1-pe time resolution approaching 100 ps
- ring-imaging, particle-identification and more
- beam test data-analysis ongoing

clear path for optimisation towards TDR and beyond

- refinements, engineering and SiPM sensor selection in 2025 and 2026
- SiPM readout mass production in 2027-2029
- o dRICH detector installation in the ePIC experiment in 2030

END

2023 test beam data analysis ongoing

event-by-event ring reconstruction: Machine Learning

10 GeV negative beam only aerogel radiator

2023 test beam data analysis ongoing

100

75

50

25 -

0

-25

-50

-75

-100 -75 -50

event-by-event ring reconstruction: Machine Learning

Predicted Image 7

-50

-25

circle fit on ML prediction

75 100

75

50

Original Image 12

100

75

50 -

25

0 -

-25

-50

-75

-100

-100

-75

75 100

Number of photoelectrons

is large as expected

11.5 GeV/c negative beam, n = 1.02 aerogel (accumulated events)

global ring parameters and performance, running also online

2D fit to accumulated data with realistic model (ring + background)

Number of photoelectrons

large as expected

11.5 GeV/c negative beam, n = 1.02 aerogel (accumulated events)

2D fit to accumulated data with realistic model (ring + background)

Background studies

data taken without aerogel radiator

with timing cuts applied, large background as seen in past years

Background studies

basically all the background remains after removing aerogel, not from DCR

in-time (40 ns window) background is ~ 10x larger than out-of-time (40 ns window) background (mostly DCR) | origin still unclear | to be understood

Background studies

there is often one background hit in the ring, this will impact resolution

2D fit to accumulated data with realistic model (ring + background)

successful beam test with prototype SiPM photodetector units (CERN-PS, ended on 18th October)

INFŃ

36

dRICH prototipe on PS beamline with SiPM-ALCOR box

beamline shared with LAPPD test

ALCOR inside

successful operation of SiPM

irradiated (with protons up to 10¹⁰) and <u>annealed</u> (in oven at 150 C)

time coincidences

dRICH prototipe on PS beamline with SiPM-ALCOR box beamline shared with LAPPD test successful operation of SiPM irradiated (with protons up to 10¹⁰)

and <u>annealed</u> (in oven at 150 C)

8 GeV negative beam (aerogel rings)

Environment

non-uniform, strong magnetic field ~ 0.7 T field lines \sim parallel to photodetector surface

SiPM cooling for low-temperature operation (-30 °C or lower)

external chiller with fluid recirculation (ie. siliconic oil) the chiller here one is just a commercial example cooling and heating capacity could use heating capability for annealing? must be demonstrated to be feasible cooling capacity at -40 C is large (1.5 kW)

Û.	General & Temperature Control										
	Tomografiuro rango										
	remperature range	-9920	0-0								
4	Temperature stability	±0,01 K									
\$)	Heating / cooling capacity										
	Heating capacity	6 kW									
	Cooling capacity	250	200	100	20	0	-20	-40	-50	°C	
		6	6	6	6	6	4,2	1,5	0,65	kW	

Laser timing measurements with ALCOR

climatic chamber

Laser timing measurements with ALCOR

Small vs. large SPAD sensors

sensors with **small SPADs have lower SNR** also after irradiation

small SPAD sensors are not radiation harder for single-photon applications (RICH)

- sensors operated at Hamamatsu recommended over-voltage
 - [datasheet] 50 μm sensors have 40% PDE, 25 μm have 25%
 - \circ [measured] 50 µm sensors have lower DCR than 25 µm when new
 - [measured] both sensors have similar DCR after irradiation

similar results and conclusions obtained with SENSL sensors

Laser timing measurements with oscilloscope

Commercial SiPM sensors and FBK prototypes

Detailed studies of SiPM online self-annealing

test on a large number of proton irradiated sensors how much damage is cured as a function of temperature and time

in this study, the same sensors have undergone self-annealing in increasing temperature steps and increasing integrated time steps

- started with T = 100 C annealing
 performed 4 steps up to 30 hours integrated
- followed by T = 125, 150 and 175 C

Detailed studies of SiPM online self-annealing

test on a large number of proton irradiated sensors how much damage is cured as a function of temperature and time

in this study, the same sensors have undergone self-annealing in increasing temperature steps and increasing integrated time steps

- started with T = 100 C annealing
 performed 4 steps up to 30 hours integrated
- followed by T = 125, 150 and 175 C

fraction of residual damage seems to saturate at 2-3% after ~ 300 hours at T = 150 C continuing at higher T = 175 C seems

not to cure more than that

Automated multiple SiPM online self-annealing

comparison between two annealing temperatures

both reach and exceed the oven limit of ~ 2-3% residual damage

• at T = 175 C

- there seems to be a faster "sudden" cure
- followed by a similar rate of reduction with time
- oven-level annealing reached faster at T = 175 C
 - < 10 hours integrated
- oven-level annealing reached at T = 150 C
 - < 100 hours integrated

INFN

Preliminary comparison of neutron vs. proton damage

neutrons from Be(d,n) reaction with 4 MeV deuteron beam

we have very preliminary results on comparison between neutron and proton damage which indicate that

neutron damage is larger after same n using NIEL scaling for normalisation for normalisation

by approximately a factor of 2x we use a 10x safety factor for radiation damage estimates

Preliminary proton vs. energy damage

we have very preliminary results on comparison between of proton damage vs. proton energy to NIEL hypothesis which indicate that the scaling is valid within 30-50% using NIEL scaling for normalisation

Detailed studies of SiPM online self-annealing

after many hours of online annealing

we noticed alterations on the SiPM windows in particular in one board that underwent 500 hours of online annealing at T = 175 C the sensors appear "yellowish" when compared to new

detailed studies are ongoing, preliminary results indicate efficiency loss after 100 hours of annealing at T = 175 C. lower temperatures unaffected up to 150 hours

Automated multiple SiPM online self-annealing

system for online self-annealing with temperature monitor and control of each individual SiPM

Beam momentum scan

positive particles, aerogel only

something went wrong with the beam configuration for 9 GeV (that's a pity, data seems not good)

reconstructed ring radius at 10 GeV/c beam momentum

INFN

Repeated irradiation-annealing cycles

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- consistent irradiation damage
 - DCR increases by ~ 500 kHz (@ Vover = 4)
 - \circ after each shot of 10⁹ n_{eq}
- consistent residual damage
 - ~ 15 kHz (@ Vover = 4) of residual DCR
 - builds up after each irradiation-annealing

annealing cures same fraction of newly-produced damage

~ 97% for HPK S13360-3050 sensors

INFN

INFN

Detailed studies of SiPM online self-annealing

test on a large number SiPM sensors how much damage is cured as a function of temperature and time

the same sensors have undergone self-annealing increasing temperature steps increasing integrated time steps

- started with T = 100 C annealing
 - performed 4 steps up to 30 hours integrated
- followed by T = 125, 150 and 175 C

fraction of residual damage seems to saturate at 2-3% after ~ 300 hours at T = 150 C continuing at higher T = 175 C seems

not to cure more than that

EIC ePIC-dRICH SiPM photodetector prototype

4x SiPM matrix arrays (256 channels) flex PCB cooling stack (water-cooled Peltier) minicrate with fron-end electronics (ALCOR ASIC inside)

PhotoDetector Unit (PDU)

aerogel tile (not shown) cables and services (not shown)

dRICH SiPM photodetector prototype in 2023

partially-equipped, 1280-channels SiPM readout surface with cooling and TDC electronics

Radiation damage estimates

1 MEQ neutron equivalent fluence (cm⁻²/fb⁻¹) minimum-bias PYTHIA e+p events at 10x275 GeV

max fluence = $6.38 \ 10^7 \ \text{neq/fb}^{-1}$ at the location of dRICH photosensors

Most of the key Physics goals defined by the NAS require an integrated luminosity of 10 fb⁻¹ per center of mass energy and polarization setting

The nucleon imaging programme is more luminosity hungry and requires 100 fb⁻¹ per center of mass energy and polarization setting

over the years the EIC will accumulate 1000 fb⁻¹ integrated £ corresponding to an integrated fluence of ~ 6 10¹⁰ n_{eq}/cm²

study the SiPM usability for single-photon Cherenkov imaging applications in moderate radiation environment

Detailed studies of SiPM online self-annealing

test on a large number SiPM sensors how much damage is cured as a function of temperature and time

the same sensors have undergone self-annealing increasing temperature steps increasing integrated time steps

- started with T = 100 C annealing
 - performed 4 steps up to 30 hours integrated
- followed by T = 125, 150 and 175 C

fraction of residual damage seems to saturate at 2-3% after ~ 300 hours at T = 150 C continuing at higher T = 175 C seems

not to cure more than that

Ageing model

model input from R&D measurements done in 2022

- DCR increase: 500 kHz/10⁹ n_{en}
- residual DCR (fast annealing): 50 kHz/10⁹ n_{eq}
- residual DCR (full annealing): 15 kHz/10⁹ n_{eq}

```
1-MeV neq fluence from background group
```

6.38 10⁷ n_{eq} / fb⁻¹

Hamamatsu S13360-3050 @ Vover = 4 V, T = -30 C

Slew-rate vs. ToT mode

ALCOR ToT mode

working with fixed threshold electronics

ALCOR slew-rate mode

after correction for laser yield and background light, measurements of sensor under study are compatible

Slew-rate vs. ToT mode

working with fixed threshold electronics

ALCOR ToT mode

ALCOR slew-rate mode

after correction for laser yield and background light, measurements of sensor under study are compatible

Slew-rate vs. ToT mode

several measurements repeated on the same NEW sensor

ALCOR slew-rate mode

after correction for laser yield and background light, measurements of sensor under study are compatible

Number of photoelectrons

even-by-event photon counting in the ring

11.5 GeV/c negative beam, n = 1.02 aerogel (accumulated events)

2D fit to accumulated data with realistic model (ring + background)