

Next Generation Microchannel Plate Detectors for High Spatial and Temporal Resolution

A. Davidson³, A. Markfort^{1,2}, T. M. Conneely¹, A. Baranov², A. Duran¹, M. Kreps³, J. Milnes¹, T. Blake³, J.Lapington², and I. Tyukin³

1. Photek Ltd, 26 Castleham Rd, TN38 9NS, UK

- 2. University of Leicester, Leicester LE1 7RH, UK
- 3. University of Warwick, Warwick,

4. Kings College London, Mathematics, London, United Kingdom

PD24 Vancouver 21/11/2024

- Characterisation of the TORCH 16x96 Multi Anode MCP-PMT
- Pulse shape
- Crosstalk count rate and gain
- Single Photon Timing Jitter
- CASE studentship with University of Warwick Alex Davidson
- Development of a Charge Sharing Photon Timing/Imaging Detector
- Instrument a capacitively coupled multi-anode readout using TOFPET2d ASIC
- Time-over-threshold discriminator, non-linear charge measurement
- Can we avoid complicated calibration using Neural Networks?
- Can we even do it faster?
- Royal Commission for 1851 Industrial Fellowship with University of Leicester Amelia Markfort

TORCH MCP Detector

High density multi-anode MCP Photon detector characterisation

> TORCH Cerenkov Particle ID Detector Concept

- Exploit prompt production of Cherenkov light in an array of fused-silica bars to provide timing.
- Cherenkov photons are propagated to detector plane via total internal reflection from the quartz surfaces.
- Cylindrical focussing block, focusses the image onto a detector plane with highly segmented photon detectors.
 - Used to correct for chromatic dispersion.
- Large area detector required to cover the full LHCb acceptance (5x6m²).

For more details on the TORCH concept see [NIM A 639 (1) (2011) 173]

Credit: T.Blake – Pisa Meeting 2024

> TORCH 16×96 Multi-anode MCP Detector

- 16×96 Anode layout, 53×53 mm² active area
- Fine pitch required in one direction
 - 552 µm pitch
 - Measure angle Cerenkov/chromatic aberration correction
 - Also reduces occupancy for high rates
- In coarse direction 3312 μm pitch

Global Gain Measurement – All pixels connected

Single Pixel – Average Single Photon Pulse Shape

NB: Ripple due EM pickup from laser

Single Pixel Gain – Pulse Area (on oscilloscope)

- Trigger on each laser trigger
- Integrate pulse area for single photon events, on a single pixel
- Histogram to produce Pulse Height Distribution (PHD) to characterise gain
- Gaussian (noise floor) + multi-Polya fit to find gain
 - 0 photon
 - 1 photon
 - 2 photon
 - Etc....

Single Photon Scanning - Crosstalk/Timing Measurement setup

Scope Measured – Gain crosstalk

> Increasing rear field – MCP output to anode

	@500V	@1500v
Channel 1	1.02 mm	0.84 mm
Channel 2	1.00 mm	0.84 mm
Channel 3	1.06 mm	0.90 mm
Channel 4	1.07 mm	0.85 mm

>

Charge Sharing Photon Timing/Imaging Detector

Neural network imaging for ToT charge measurement

Microchannel based Photo-Multiplier Tube

Multi- Anode Photon Multiplier Tube

- Photocathode to convert photon to an electron
 - Photoelectron accelerated toward micro-channel Plate (MCP)

MCP amplifies photoelectron

- Electron enters pore
- Hits wall produces secondary electrons
- Multiple "bounces" creates gain (up to a factor of 10⁷)

Collected by a readout

Capacitively coupled to Multi anode
→ Multi-channel current pulse →
Tofpet2d Electronics

Next generation of Auratek PCS: Charge sharing

Electronic output:

- Each pixel has its own ToT discriminator
- Digitally time stamp
- Charge measurement via Time over trehosld

Capacitively Couple MCP charge cloud to multiple readout pads

> Experimental data testing empirical detector data

For training data perform a fine pitch scan of the detector area, using pulse laser Photons are detected, and produce multi channel events in TOFPET2d Further processed to cluster photon events coincident with laser

Example of electronics set up outside the dark box

A single charge distribution:

What the neural network sees as input:

X (in pixels)	Y (in pixels)	TOT (charge)	Time 2 (in ps)	Time 1 (in ps)	x
X 1	Y1	TOT1	T1	Tlaser	f
X 2	Y2	TOT ₂	T2	Tlaser	p
X3	Y ₃	TOT ₃	Тз	Tlaser	ŀ
X 4	Y 4	TOT ₄	T 4	Tlaser	
X 5	Y 5	TOT ₅	T ₅	Tlaser	
X 6	Y ₆	TOT ₆	T ₆	Tlaser	

x 10,000 for a scan position

Expected output: Xlaser (mm), Ylaser (mm), Tlaser

Charge Sharing – Number of TOFPET2d channels over threshold

> Analytically spatial reconstruction of empirical detector data

• The Convolutional neural network is trained a single sample representing a charge distribution giving information:

•
$$64 \times (X_{\rho}, Y_{\rho}, Q_{\rho})$$

• to give outputs of:

• X_{y} and Y_{y} .

Each $(X_{\gamma} and Y_{\gamma})$ represents the spatial photon coordinates for each charge distribution

CENTROIDING ALGORITHMIC METHOD

$$X_{\gamma} = \sum \frac{x_p q_p}{\sum q_p}$$

$$Y_{\gamma} = \sum \frac{y_i q_p}{\sum q_p} \, ,$$

$$T_{\gamma}=\overline{t_i}$$

Each (X_p, Y_p, Q_p) represents a packet of data from a single anode pad.

Reconstructing X and Y, convolutional NN

Difference in reconstruction and empirical coordinates

	Reconstruction error (Pixels)		
	Full Width Half	Root Mean	
	Maximum	Squared Error	
X/Y error in reconstruction (CNN)	0.26	0.11	
X/Y error in reconstruction analytical	3.42	1.46	

RMS of a top hat distribution: $Rms = \frac{1}{\sqrt{12}} Pixel_{width},$ $Rms = \frac{1}{\sqrt{12}} x \ 1.656 = 0.478$

http://192.168.0.77:5000/#/experiments/326756046984 481790/runs/63b52b2eb011435a99c85d2279a3436b

> Total RMS Uniformity

To Conclude

- First prototype of TORCH 16x95 MAPMT built, characterisation ongoing
- Promising cross talk and timing performance
- Proof of principle Neural Network developed for charge sharing ToT imaging photon detector showing potential
- Need to demonstrate with real world images/timing data

With Thanks: University of Warwick & TORCH Collaboration University of Leicester, Maths & Physics Departments

26 Castleham Road, St Leonards on Sea, East Sussex, TN38 9NS, UK T +44 (0)1424 850 555 F +44 (0)1424 850 051 E sales@photek.co.uk www.photek.com

Backup Slides

• Measure crosstalk using residuals of PHD fit, i.e. number of events outside noise pedestal (e.g. 5σ and 10σ)

> Experimental data testing empirical detector data

Preliminary reconstruction of X, Y and T values of photon position

A pulsed 0.2 mm laser with a wavelength of 638 nm was triggered at a rate of 300 kHz completing a coarse 0.25 mm step 28 mm² **circular scan of the detector's active anode area**.

Example of electronics set up outside the dark box

A single ch distributio	arge n: What t	he neural netw	vork sees as inp	out:	Values o 10 ¹³	f order
	X (in pixels)	Y (in pixels)	TOT (charge)	Time 2 (in ps)	Time 1 (in ps)	x 10,000
	X1	Y1	TOT ₁	T1	<mark>Tlaser</mark>	for a scan
	X2	Y ₂	TOT ₂	T ₂	Tlaser	position
	Хз	Y ₃	TOT ₃	Тз	Tlaser	-
	X 4	Y4	TOT ₄	T4	Tlaser	
	X5	Y5	TOT ₅	T5	Tlaser	
	X6	Y6	TOT ₆	T ₆	Tlaser	
					· .	J

Expected output: Xphoton (mm), Yphoton (mm), Tlaser

> Traversing the latent space

What does the latent space look like in my work?

VISAGE THE FUTURE

PD24 Vancouver 21/11/2024

Reconstructing the photon position using a Python Monte Carlo trained NN

Convolutional Neural Network to reconstruct photon spatial coordinates X and Y

PHOTEK ENVISAGE THE FUTURE X_{γ} , Y_{γ} and T_{γ} ($T_{measured} - AWC(ToT)$).

> Experimental method for calibrations

Methodology

- To calibrate for **charge**, **ToT** and **T**_γ:
- TOFPET2d electronics do not give a direct measure of charge, instead it measures Time-overthreshold (ToT) using a time discriminator technique, this is related to charge collected on the anode
- a fast voltage step (1 ns rise time) produces a charge injection to each TOFPET2d channel through a 2.2 pF capacitor, emulating the MAPMT (Multi-anode Photo Multiplier Tube) output current pulse.

Charge, Time-over-Threshold and time of event calibrations

Future work...

Training cycle

