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Diamond detectors (charge readout)

Metal : |

Electrodes
Diamond
Substrate
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Advantages:

* Rad Hard

« Gamma “blind”

 Fast (100s of ps)

* Thermal Cond.

 Large bandgap, low leakage
e Lithography — Spatial Res.

Disadvantages:

« Small (5mm x 5mm)

« Expensive (~$2k each plate)
 Limited availability

* Need high purity (~10ppb N,)

« Single crystals, high crystallinity
* Lithography — Time



Diamond detectors (scintillation?)
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Four papers reporting on
diamond scintillators as input to
“research rabbit”

Peak of activity around ~60s/70s,
and a few papers in the early 90s

Note that most of them study
Impurities through TL
(ThermoLuminescence) for
charge readout

Then... B e <

Now new interest seems to arise,
given developments in diamond
growth



Diamond detectors (scintillation!)

Diamond
Layer .
g{:ﬁ{ggg . Singleycrystal '.A‘dvantag esS.
« Poly Crystal Rad Hard
Transparent + Powder « Gamma “blind”
substrate (if | g "Mosaic » Fast (rise times ~1ns)
needed) 5 » Low quality diamond
[ ] e Large areas
\ight Sensor  Relatively inexpensive
* SiPM, PMT, SPAD, * Promising light yield
CCD

Disadvantages:

« Geometry needs optimization

* Light yield needs optimization

* Very high refractive index

 Thick layers may not be transparent
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Photoluminescence in diamond

Timing Photoluminescence from different diamonds
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Scintillation in diamonds: setups
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OnSemi C-Series 35 um (3mm x 3mm
e Hamamatsu VUV4 S13371 (6mm x 6mm) pelsiitiog reagout( X 3mm)

e Readout: MCA e Recording charge per channel per trigger
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Hamamatsu VUV4

Scintillation of natural diamond powder
(10-20 pm)

5.5 MeV alpha particles from
241 Am Data_Gain 5 62 V Tem_43 Integr 0 1.dat
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OnSemi Array-C

Sensor calibration and reference sample

 Single photon calibration

« Alaser is used to illuminate the array and
trigger the acquisition

« Multi-gaussian fit to extract gain for each
SiPm
« Used an LSO crystal as reference
sample
* Irradiated under y (*¥’Cs) and a (**1Am)

* Fitting the peaks:
« y 21.3 detected pe’/keV
* a —20.1 detected pe/keV
* Resulting in a/y~0.08
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*pe: photoelectrons
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OnSemi Array-C

Systematic study: samples and setup

Glass substrate +

* The sample is laid on the SIPM
array

« An alpha source (**1Am) is placed
on top of the holder

diamond + « Data are acquired triggering on the
SLiF coating on one sum signal of all the array
side

Glass substrate +
Optical tape +
Diamond powder

1” CVD high purity
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OnSemi Array-C

Diamond scintillation: spectra

Integrated Npe

* Spectra of the five samplesin 3
terms of detected "
photoelectrons

* The 1” diamond shows a
lower light yield: this is a low
Impurity sample

« L2 show the longer tail at 10°
higher Npe: its yellow color
might indicate higher levels of
Impurities (dopants)

 Various unknowns: uniformity,
thickness, transparency,
doping concentrations
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OnSemi Array-C

Diamond scintillation:

* Aslit Is cut through an
aluminum foil and placed on

the sample (L4)

* The alpha source is placed at
about 0.5 cm on top of it

* Then, the slit is then rotated
In the opposite direction

* For each event, the center of
mass Is computed:

= — -1 v 1sipm v
* Xem = Qrot 2uj=1  QiXi
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Designing a diamond neutron detector

5Li + In —» 4He (2.05 MeV) + 3H (2.73 MeV)

Cross Section (25meV)
Attn. Length (A = 1/n-c)
Triton escaping °LiF

a escaping SLiF

Triton into Diamond

o Into Diamond
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955 barn

~171 um (LiF)

33.7 ym
6.05 pm
20.9 um
3.63 um

.

Cross Section (25 meV)
Attn. Length (A = 1/n-6)
Triton escaping 1°B

a escaping 1°B

’Li into Diamond

a Into Diamond

Diamond/Converter
 Paraffin (fast neutrons)

* 6Lj or 1B — thermal neutron
» Engineered structure

0B + In — 7Li (0.84 MeV) + “He (1.47 MeV)

lon ranges of reaction products lon ranges of reaction products

Converter Diamond

—
3840 barn
~18.8 um A
1.83 um
3.53 um -
1.17 pm
2.52 pum jon Ranges

Ve

N
Other possible converter materials

e h10BN
e Gadolinium / Gadolinium oxide
e Transparent
e Cross section: 2.54 x 10> barns
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Slngle layer design: simulation
A 100 pm thick diamond is placed orthogonally
to the incoming thermal neutrons (25 meV) _

Refractive 2.46

«  One side of the diamond is coated with a SLiF

film index
«  The other side of the diamond is coupled to a AUCSBERIRI ) 28 i 055 i S
) . . : length
highly pixelated sensitive volume mocking a
photodetector Light yield 3000 ph/MeV N/A NA
- FTFP_BERT_HPT Physics is used Thickness 100 um 0.1-1.8 um 1 mm

*  Optical photons propagation included

«  The neutron detection efficiency is evaluated vs
the 6LIF thickness
. A neutron is considered detected if the detected
photons are >20
. Efficiency =
detected neutrons/impinging neutrons

G" Brookhaven
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Single layer design: simulation

Efficiency
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(Left) Spectra for ~3 um, ~29 um SLiF thickness. (Right) Efficiency vs °LiF thickness.

« 10 um > ~3% efficiency. Stacking 10 layers, it is possible to reach ~30% (assuming
transparency)
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Diamonds embedded In converter:
simulation

- Diamond crystals (~20 um ) are
modeled as cubes and placed on
a lattice pattern

- The surrounding is made of a
SLiF block

- Detector dimensions reduced to
0.3 mm x 0.3 mm to limit
computation time

- Same material properties and
physics as before

¢ Brookhaven
National Laboratory 16




Diamonds embedded in converter:

simulation
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Neutron detection with diamond powder

e Diamond powder (10-20 um particle size) mixed with °LiF
powder

¢ Dissolved/suspended in water, painted over mesh on glass
slide

e Placed over SiPM array (OnSemi ArrayC)

¢ Placed in light-tight enclosure

e Neutrons: 2°2Cf/?°0Cf (260 uCi) thermalized by 10-20 cm of
polyethylene
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Preliminary estimate of detector efficiency

3SHe detector

Efficiency of 3He detector

o e — el AN (MRS |

Cf source

Diamond
sensor

Efficiency by comparison

Ve

e 3He detector (24 cm x 24 cm)

o Al window ~90% transmissive

e 3He/CF, mixture: ~50%
probability of stopping neutron

e Rate: 147 Hz

e Overall 2He efficiency
estimated to be ~30-40%

-

(o Compare rates from 3He detector

with diamond detector

e SiPM area: 1.44 cm?

e Rate: 0.44 Hz

e Normalize by relative area

e Overall diamond detector
efficiency estimated to be ~1.2 x
s3He = 36-55%*

J -
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*rough estimate from source activity
and geometry

Live data

Center of mass

30

125

120

Reconstruction artefact introduced
by reconstruction and thermal noise



Paths forward: Diamond and converter
Integration

Mechanlcal assembly
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Summary and future perspective

« Adiamond charge particle detector using scintillation light detection is under development

« Diamond has good light yield with fast response (< 1 ns rise time)
. Not limited to ultra high purity electronic grade diamond
. Works with inexpensive powders

« Diamond coupled with converter material makes an efficient neutron detector for applications with high
background and gamma rejection

«  Diamond powder + SLiF estimated efficiency of ~36-55%
- Gamma “Blind’

«  Working on optimizing neutron detector

. Increasing transparency
. Increasing light yield
. Increasing neutron capture

 Adding scope:
. Neutron imaging: integration of positions sensitive photodetector (digital sipm, spad camera, ...)
. Directional capabilities: coded masks
. Higher TRL product: integrate electronics for readout towards a compact device

¢ Brookhaven
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THANK YOU!

Thanks to Instrumentation Department, HDI Lab, Nanofabrication/Clean Room teams.
Supported by BNL Laboratory Directed Research and Development (LDRD) 24-074
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Backup
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Center of mass computation

To understand the distribution of center of mass
In case of uniform illumination a toy Montecarlo
was developed:

« 300 photons are generated with a Poisson
distribution at a distance d from the SIPM

* For each SiPM the solid angle is computed _

« 10000 events are generated and tr}le_center of 25 gf;r?]i;e
mass is computed as X, = Qror 2oy o QX S
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Center of mass computation

To understand the distribution of center of mass
In case of uniform illumination a toy Montecarlo
was developed:

« 300 photons are generated with a Poisson
distribution at a distance d from the SIPM

« For each SIPM the solid angle is computed |
« 10000 events are generated and the center of | \éV_JLimise
mass is computed as X, = Qror Lo M Q% At

 Then, noise is activated per each SIPM with a
Poisson distribution around 3 photons
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Center of mass computation

To understand the distribution of center of mass
In case of uniform illumination a toy Montecarlo
was developed:

« 300 photons are generated with a Poisson
distribution at a distance d from the SIPM

« For each SIPM the solid angle is computed
- 10000 events are generated and the center of
mass is computed as X, = Qror Lo M Q%

 Then, noise is activated per each SIPM with a
Poisson distribution around 3 photons

« |f the light source becomes really close...
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