

FBK roadmap towards the next generation of 2.5D and 3D integrated SiPMs

gola@fbk.eu

A. Gola, F. Acerbi, F. Caso, J. Dalmasson, A. Ficorella, P. Kachru, S. Merzi, L. Parellada Monreal, G. Paternoster, M. Penna, M. Ruzzarin, O. Marti Villareal, N. Zorzi

Outline

- **Motivation to develop Hybrid SiPMs / SPAD arrays**
- **2.5D and 3D integration activities on SPADs / SiPMs at FBK**
- **NUV-BSI Update**
- **Perspectives**

Motivation to develop Hybrid SiPMs / SPAD arrays

Alberto Gola - PD24 - Vancouver 20/11/2024

The traditional application of SiPMs is the ToF-PET. In addition, thanks to the *constant improvement of SiPM performance*, they are being evaluated in the *upgrade of several Big Physics Experiments*.

Positron Emission Tomography | The Big Physics Experiments

4 Alberto Gola - PD24 - Vancouver 20/11/2024

Typical Applications FBK SiPM technologies

Examples of Big Physics experiments FBK is currently working on.

Advantages of separated sensing and readout layers Why Hybrid SiPMs?

- CMOS-compatible → transfer to *large-volume foundries* is possible
- ~10 lithographic masks → *Lower cost per unit area* compared to full CMOS process (> 40 masks)
- Customized fabrication process, no constraint form transistor fabrication \rightarrow *best electro-optical performance possible*, also after irradiation (e.g. DCR, DCR vs.T, PDE, correlated noise, etc..)
- *Cheap to iterate / adjust the design* → Different sensing layers for different applications, room for subsequent upgrades without changing readout ASIC
- All the wafer area is sensitive to light \rightarrow *maximum detection efficiency* (PDE)

Alberto Gola - PD24 - Vancouver 20/11/2024

Custom SiPM technology **for sensing layer**:

- Readout *Free choice of CMOS node* → optimal performance of readout.
	- *CMOS area can be smaller than sensing area* (2.5D) → lower cost
	- *Independent design cycles* of sensing layer and readout layer → more efficient R&D phase

CMOS technology **for readout layer**:

By *moving the high-field region towards the bottom of the epitaxial layer*, the PDE is enhanced.

Avalanche is mostly *triggered by electrons.*

NUV-DJ development Customized sensing layer

Conceptual drawing of the different NUV.MT and NUV-DJ microcell structures (cross-sections, not to scale)

Alberto Gola - PD24 - Vancouver 20/11/2

PDE increase: from holes to electrons triggering the avalanche

PDE vs. wavelength measured on the 45 μm cell of the NUV-HD-MT technology (12 V) and on the 40 μm cell of the NUV-HD and of the newly introduced NUV-DJ SiPM technologies (9 V).

Cryogenic and VUV-sensitive SiPMs Customized sensing layer

NUV-HD-Cryo SiPM technology is an *enabling technology for the DarkSide-20k* experiment, currently under construction.

of SiPMs operated at 87 K. Acerbi, Fabio, et al. "Cryogenic characterization of FBK HD near-UV sensitive SiPMs." *IEEE Transactions on Electron*

Devices 64.2 (2017): 521-526. Reduction of Dark Count Rate at cryogenic temperature thanks to electric field engineering in FBK SiPMs.

A 10x10 cm² SiPM array would have a total DCR < 100 cps!

SPTR and CTR *performance is degraded* when reading out SiPMs with large areas, mainly *because of SiPM large output capacitance, of poor signal extraction and of SiPM transit time Spread* (TTS).

With larger SiPMs, the SPTR can be preserved by *segmenting the active area into smaller pixels, or miniSiPMs, with separate 2.5D / 3D connection to readout*, followed by suitable combination of time pick-off information.

Effect of SiPM area on SPTR Segmentation of SiPM Active Area

2.5D and 3D integrated SiPMs / SPADs at FBK

Alberto Gola - PD24 - Vancouver 20/11/2024

FBK is part of the *IPCEI on microelectronics* project (Important Project of Common European Interest - €1.75 billion total public support, 12 M€ to FBK).

The goal for FBK is upgrading its optical sensors technologies, by *developing TSVs, micro-TSV and Backside Illuminated SiPMs*. This will allow high-density interconnections to the front-end and high-segmentation.

FBK IPCEI clean-room upgrade 2.5D and 3D Integration

In the via-mid process, the *TSV is formed during the fabrication of the SiPM, modifying its process flow*. In the via, the *conductor is the highly-doped silicon bulk*.

TSV – via mid: process flow 2.5D and 3D Integration

Alberto Gola - PD24 - Vancouver 20/11/2024

• SiPM fabrication + TSV formation

- **Metal-free TSV**
- Flexible TSV layout and size
- Low bulk resistivity

• Edge Trimming + BONDING

THINNING

- DEBONDING Thickness at least 150 um **Glass-less TSV** concept 500 um SiPM pitch • NO-DEBONDING Thickness 10-50 um Standard TSV **microTSV** < 50 um SPAD pitch
- Contacts formation

Preliminary results on TSV via-mid development, with partial SiPM process, to *check isolation and continuity* (no Geiger-mode multiplication).

TSV – via mid: first results 2.5D and 3D Integration

At **-100 V** of bias applied the intensity varies from **30 to 200 fA**

Trough Silicon Vias – Via Mid are isolated from the bulk silicon contact

In the *short and medium term*, medium density interconnection seems the sweet spot to obtain *excellent performance (e.g. timing) on large photosensitive areas while not increasing complexity and cost too much*.

We propose a Photon Detection Module (PDM) in which *SiPMs with TSVs down to 1 mm pitch* are connected to the *readout ASIC on the opposite side of a passive interposer*, in a *2.5D integration scheme*.

2.5D integrated SiPM tile 2.5D and 3D Integration

Hybrid SiPM module being developed for ultimate timing performance in ToF-PET

Alberto Gola - PD24 - Vancouver 20/11/2

Jožef Stefan Institute

MASSACHUSETTS GENERAL HOSPITAL

1 - 3 mm interconnection pitch

The 2.5D integrated PDM (50x50 mm²) will be the basis of a *30x30 cm² ToF-PET panel*, which will be used to build limited-angle ToF-PET systems, for brain PET, Cardiac PET and full-body scanners.

We *expect very good timing performance*, supported by preliminary measurements achieved with NUV-HD SiPMs coupled to FastIC ASIC.

2.5D integrated SiPM tile for timing 2.5D and 3D Integration

14 Alberto Gola - PD24 - Vancouver
20/11/20
20/11/20 SPTR and CRT measured at FBK NUV-HD-SiPMs read by the FastIC ASIC developed by ICCUB. **Sensor:** NUV-HD-LFv2 SiPMs, 3x3 mm² **Scintillator:** 2x2x3 mm³ LSO:Ce,Ca **Power consumption**: 3 mW / channel

Application of the PDM to build large panes used in new, limted-angle PET applications: Brain Pet, Cardiac PET, while-body PET

Conceptual drawing of the PDM under development

Exploiting the Deep Trench Isolation, which is anyway present between adjacent SPADs in most SiPMs, we can achieve single SPAD isolation if we thin the wafer down sufficiently (use of a glass support wafer is needed). We can exploit this isolation to *build a "bulk" TSV just below and coincident with each single SPAD*. The *resistors* are still on the front-side (no change in signal shape is expected). *Common connection for bias is on the front* and requires a TSV to bring it from the bottom.

Cross-section Single-SPAD TSV

-
-
-
-

Vbias Optional metal redistribution layer (might as well be in the ASIC)

Advantages:

- (Almost) *no changes to the state-of-the-art, FSI, NUV-sensitive SiPMs* \rightarrow conservative approach.
- It might be the only wat to have fine-pitch TSVs (around 50 um) with *no loss of FF* for the SiPMs.
- No additional trenches needed \rightarrow simpler.
- Flexibility to have single-cell access, when needed, but also miniSiPMs and *microSiPMs*, through *either a redistribution layer* on the SiPM backside or directly in the *3D integrated ASIC*
- *Connection for the topside metal* can be obtained through the same type of vias (possibly with epitaxial layer removal).

Advantages / Drawbacks Single-SPAD TSV

DIGILOG investigates higher density interconnections to *approach the dSiPM performance without the complexity of single-SPAD access*.

FBK will employ the Single-SPAD TSV to support the DIGILOG project, removing the need to replace the central SPAD in the uSiPMs with a TSV, thus achieving the *highest PDE possible*.

SPAD size: 50x 50 μ m² µSiPM: 3x3 or 6x6 microcells µTSVs at the periphery

High-density integration: DIGILOG microSiPM

- \bullet $\,$ 3x3 mm², 50 µm cell, M0 layout
- Bias contacts at periphery
- 6x6-element μSiPM

- µSiPMs with µTSVs
- µASICs with *in situ* TDCs

S. Gundacker, et al., A. Gola, E. Charbon, V. Schultz *NSS* 2023 S. Gundacker, et al., *to be published* 2023

DIGILOG chip under fabrication at FBK:

Segmentation of the SiPM active area in *μSiPMs preserves the SPAD Single Photon Time Resolution*, when using the high-frequency readout (FBK implementation).

Timing performance: SPTR with μSiPMs microSiPM

FBK will also employ the single-SPAD TSV to achieve *single cell connection*. While complexity of the system increases, it might provide *ultimate timing performance*.

Full 3D integration with micro TSVs: Hybrid SiPM 3D Integration

Alberto Gola - PD24 - Vancouver 20/11/2024

Example of dSiPM architecture developed at FBK (SBAM project)

-
- *concept*.

The next-generation of developments, currently being investigated at FBK, is building a *backside-illuminated, NUV-sensitive SiPM*. Several technological challenges should be overcome.

Clear *separation between charge collection and multiplication regions*.

Next-generation development: Backside Illuminated SiPMs NUV-BSI SiPMs

- Up to 100% FF even with small cell pitch
- Ultimate Interconnection density: < 15 um
- High speed and dynamic range
- Low gain and external crosstalk
- (Uniform) entrance window on the backside, ideal for enhanced optical stack (VUV sensitivity, nanophotonics)
- **Local electronics: ultra fast and possibly** low-power.

Potential Advantages:

New BSI-SiPM structure

Development Risks:

- Charge collection time jitter
- Low Gain \rightarrow SPTR?
- Effectiveness of the new entrance window

Collection Region

Radiation hardness:

- The SiPM area sensitive to radiation damage, is much smaller than the light sensitive area
- **Assumption**: the main source of DCR is field-enhanced generation (or tunneling).

NUV-BSI Update

Alberto Gola - PD24 - Vancouver 20/11/2024

One of the most important challenges in the development of the NUV-BSI process flow is *achieving small total thickness variation (TTV)* after wafer thinning, to ensure *consistent SPAD performance across the wafer*.

> Substrate: Highly doped Silicon Thickness: \sim 500 µm

TTV after chemical mechanical polishing is too high → *study of additional TTV reduction process*.

Backside process flow NUV-BSI SiPM technology

Alberto Gola - PD24 - Vancouver 20/11/2024

1. Starting Wafer (6")

Epitaxial Silicon layer (few µm to tens of μ m) Low doping concentration SiPM trenches

4. TTV minimization step

Plasma Ion Implantation and laser annealing ARC deposition

5. Back/surface passivation

After optimization of recipes and procedures, *a TTV of less than 1 um was achieved*. *TCAD simulations confirmed that it is within the design specification for the NUV-BSI SPAD* structure.

Development of TTV reduction process NUV-BSI SiPM technology

Alberto Gola - PD24 - Vancouver 20/11/2

Median IV Comparison IBIS run – Wafer#3 Run IBIS#1 – First wafer-level characterization

When increasing the cell size, the dark current increases and the second divergence is anticipated. Pre-breakdown current decreases as the cell size increases.

Alberto Gola - PD24 - Vancouver 20/11/2

----- W3a_EW_25_001-E - W3a_W3_15_001-C ----- W3a_W3_15_001-E

The run IBIS#1, supported by INFN, is being processed in FBK cleanroom and *has just completed the microfabrication on the front side*.Median IV - Comparison

The first measurements were carried out on a few wafers, whose microfabrication was stopped before the backside processing.

Reverse current measured on different microcell sizes of one layout split from the IBIS INFN NUV-BSI run, with (C-type layout) and without (E-type layout) the Isolation connection.

15 um cell – Signal shape and Gain Run IBIS#1 – Preliminary Functional measurements

Alberto Gola - PD24 - Vancouver 20/11/2024

at different value of the overvoltage

Avalanche gain measured on the 15 μm cell size of the NUV-BSI SiPMs

Perspectives on SiPM Radiation Hardness

Alberto Gola - PD24 - Vancouver 20/11/2024

Putting it all together Perspectives for R&D on SiPM rad hardness

Under *moderately optimistic hypotheses*, the *DCR* suppression factor R_{DCR} can be estimated as follows:

By *combining all the techniques identified* to improve SiPM radiation hardness together, a *very significant DCR reduction seem within reach*.

Alberto Gola - PD24 - Vancouver 20/11/2 $R_{tot}^{DCR} = R_{microlens}^{DCR} * R_{chargefocus}^{DCR} * R_{cnontag}^{DCR} = R_{microlens}^{DCR} * R_{chargefocus}^{DCR} * R_{couling}^{DCR} =$ conservative \approx 3 * 5 * 10 * 30 = $5 * 10^3$ Challenging, but very promising R&D realistic \approx 5 ∗ 15 ∗ 100 ∗ 60 = 5 ∗ 10⁵ SPAD #1 SPAD #2 SPAD #3 SiPM Possible use of micro lenses to implement a *sparse light readout* that could improve the radiation tolerance of the detector.

-
- -50°C
- $\approx {\it DCR} < 5*10^5$ cps/m/m² @ 10^{12} 1 MeV n_{eq}/cm^2 $\approx {\textit{DCR}} < 5*10^3 \text{ cps/mm}^2$ @ 10^{12} 1 MeV n_{eq}/cm^2 Is this reasonable? R&D needed to confirm
	- roadmap!

Monolithic vs. 2.5D / 3D Integration

Alberto Gola - PD24 - Vancouver 20/11/2024

Very preliminary comparison of different approaches Cost Estimation

-
-
-
-

The choice of the best solution *depends on the specifications*. For example: *how much processing area (ASIC) do we need* for a given sensitive area of silicon? Also depends on the miniSiPM pitch. Some hypotheses:

- a. ASIC area = 10% of sensing area for 1 mm² pitch.
- b. ASIC area = 50% of sensing area for 0.1 mm² pitch.

-
- CMOS readout ASIC
- Wafer to wafer bonding
-

Hybrid – full 3D – small pitch:

Very preliminary comparison of different approaches Cost Estimation

ASIC $Area \sim 1$

ASIC Area

Sensitive Area

However, integration costs and packaging costs should also be considered.
 Paragonal 20/11/2024

$Cost_{SIPM} \cong$ ¹/ $\mathbf{1}$ $\overline{\mathbf{4}}$ CostCMOS

Sensitive Area Package

As a first order approximation, the price of the wafer is proportional to the number of lithographies in the process. $CMOS \cong 45$ lithos

Custom SiPM \cong 12 lithos

We assume that the *price per unit area of a custom SiPM wafer* (built in large external foundry) *scales in the same way as engineering CMOS run*.

Cost Estimation

Probably, a more detailed study is needed to select the best option based on the experiment specifications. \vert

Thanks to all the members of the team working on custom SiPM technology at FBK: • **Fabio Acerbi** • **Ibrahim Mohamed Ahmed** • **Lorenzo Barsotti** • **Fabiola Caso** • **Jacopo Dalmasson** • **Andrea Ficorella** • **Priyanka Kachru** • **Oscar Marti Villareal** • **Stefano Merzi** • **Giovanni Palù** • **Laura Parellada Monreal** • **Giovanni Paternoster** • **Michele Penna** • **Maria Ruzzarin** • **Gianluca Vedovelli** • **Nicola Zorzi**

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Thank you!

We are hiring! [https://jobs.fbk.eu/](https://jobs.fbk.eu/Annunci/Jobs_A_research_position_on_development_of_custom_silicon_detectors_at_the_Bruno_Kessler_Foundation_Centre_for_Sensors_and_Devices_233147297.htm)

