

Ultrafast Stimulation of Single Photon Avalanche Diodes with **Broad Spectrum Light Source**

Seraphim Koulosousas (On behalf of the PHORWARD Group at TRIUMF) Royal Holloway University of London

6th International Workshop on New Photon Detectors 21/11/2024

LEVERHULME TRUST

Science Motivation for Fast Timing Characterisation Some of the biggest drivers for the adoption of SPADs include

- - Fast timing ~10ps resolution
 - Single photon counting
 - High Photon Detection Efficiency (PDE)
- As the technology matures we see more and more applications aiming to utilise these devices to their full potential.
 - This requires characterisation and diagnostic techniques that can keep up!
 - Understanding their response allows us to discover new applications.
- At TRIUMF we have developed an experimental setup for the comprehensive characterisation of SPAD devices
 - Temparature control (300K 77K)
 - Optical focus
 - Imaging/Spectroscopy
 - Femtosecond laser
 - <u>Tunable wavelength 310 nm 2800nm</u> \bullet
 - <u>Two-Photon Absorption (maybe)</u>
- Help drive Research & Development and design through data driven models.
- **Promote Collaboration.**

Seraphim Koulosouas

6th International Workshop on New Photon Detectors

2

Understanding SPAD Response

• Timing resolution

- Femtosecond pulse widths allows for the photonics to be factored out of the characterisation
- sensitivity
 - Depth deposition depends on wavelength
- Device noise characteristics?
 - Optical Cross Talk
 - Trench Effectiveness
 - Secondary emission
- Temperature Characteristics
 - Some applications require cryogenic cooling

With the Microscope for Injection and Emission of Light (MIEL), we can probe all these features

Seraphim Koulosouas

Temperature control

- PDI Controlled LN2 Pump
- Positional Control
 - Sub-micron prescision
- Focus control
 - Interchangeable objectives

Imaging/Sectroscopy

- LN2 cooled CCD
- Princeton Instruments Spectrometer

Seraphim Koulosouas

Stimulated Secondary Emission of SPADs

MIEL Detailed Outline

Seraphim Koulosouas

- During an Avalanche further photons are produced contributing to

Timing Measurements on Sherbrooke Digital SPAD

- In Collaboration with Sherbrooke we were able to use MIEL to test one of their \bullet single Digital SPAD designs
 - Individual SPAD with integrated CMOS readout.
 - Known structure information allows us to compare our data to model predictions of the device.
- **Timing Response modelling**
 - Can utilise simple diffusion models to probe the effect of doping on hole/electron \bullet transport in SPAD designs
 - Can leverage PDC ~10ps resolution allowing us to see transport variations ulletdepending on device structure.
- Feasibility of Two photon absorption in SPADs \bullet
 - Can SPADs be used for Calorimetry? ullet

Seraphim Koulosouas

6th International Workshop on New Photon Detectors

Université de Sherbrooke

6

Probing Charge Transport with Broad Spectrum

By using different wavelengths we can deposit charge at varying depths.

- @ < 400nm we can deposit averything above the depletion region.
- @ >500nm we can start probing carrier diffusion from the bulk
- Used MIEL to probe how this affects the timing response of the device

Seraphim Koulosouas

Simple Diffusion Time Response Model

Two Main Contributions

- ~Gaussian Avalanche Component \bullet
 - Dependent on Electric Field
 - Carrier Type e/h
 - Readout electronics
 - Fitted to empirical data
- Carrier Diffusion \bullet
 - Dependant on Mobility and Lifetime
 - Carrier type e/h
 - Treated as a Random walk.
- Can separate contributions of electrons from P+ region and holes from N region
 - Broadening of Gaussian component ulletassociated with electron diffusion from P+ region.
 - Mobility far lower in highly doped \bullet substrate.

Seraphim Koulosouas

 \approx

Carrier Diffusion dictated by Diffusion coefficient, D.

$$D = \frac{\mu(N)k_bT}{q}$$

Δt

Timing Response Measurement

- Selected a range of wavelengths between (380nm - 800nm)
 - Beam is attentuated and filtered lacksquare
 - Time response calculated as \bullet difference between the laser sync rising edge and PDC output rising edge.
- Data Taken with Tektronix MS054 Scope
 - Trigger set at 50% of Waveform
- The time response of each wavelength was then compared to monte carlo simulation

Seraphim Koulosouas

6th International Workshop on New Photon Detectors

T50%

Investigating Hole Diffusion in PDC

Generally good agreement between Data and simple model.

- Tail dominated by hole diffusion
- Model starts to vary at higher wavelengths
- At 380nm almost nothing is deposited in the bulk below the depletion region.

Université de Sherbrooke

Seraphim Koulosouas

6th International Workshop on New Photon Detectors

Investigating Prompt Response of PDC

Generally good agreement between Data and simple model.

- At 380nm all carriers are deposited in the P region.
 - Model predicts a much broader gaussian at 380 due to worse electron mobility in highly P doped region.
- 540nm is generally good agreement
- 800nm: Substantial disagreement in the leading edge
 - Planning to retake this data.

Université de Sherbrooke

Seraphim Koulosouas

6th International Workshop on New Photon Detectors

11

Two-Photon Absorption with SPADs

- of two light quanta matches the materials bandgap energy (Ebandgap).
- The loss of Irradiance, I, with depth is modelled by :

- Proven for silicon particle detectors (doi: 10.1109/TNS.2020.3044489)
- Fine control of charge deposition in SPAD devices.
- Could SPADs measure calorimetry information?

Seraphim Koulosouas

- \bullet 0.48 NA Olympus IR objective.

- device.
- bulk

See a linear trend with focus

Difficulties with TPA in SPAD's

Seraphim Koulosouas

Conclusions

- At TRIUMF we have developed a test setup that allows us to broadly characterise \bullet **SPAD Devices**
 - Femtosecond pulsed broad spectrum laser allows us to probe charge transport in ulletthese devices
 - Understanding effects at the picosecond level will aid in the design and development ulletof future devices
 - Will aid in the development of new applications and the refinement of current ones. Attempts at TPA in Digital SPAD shows ome interesting effects in the timing
- distribution with varying focus.
 - Though still inconclusive there are some interesting things to keep us busy.

Seraphim Koulosouas

