
spadRICH 1

R. Dolenec b,c,*, C. Bruschini a, E. Charbon a, D. Consuegra Rodríguez b, W.-Y. Ha a, S. Korpar b,d, 

P. Križan b,c, R. Pestotnik b, A. Seljak b, P. Singh a, G. Taylor a

a AQUA Laboratory, École polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
b Jožef Stefan Institute, Ljubljana, Slovenia

c Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
d Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

* rok.dolenec@ijs.si

SiPM and CMOS SPAD characterization at liquid nitrogen temperatures

This project has received funding from the Slovenian Research and

Innovation Agency (project J1-50009) and the Swiss National Science

Foundation (project No 200021E_218853).



Overview

• Background

• future RICH detectors present high photodetector requirements

• spadRICH project 

• developing rad-hard digital analog SiPM

• CMOS SPADs characterization results

• Previous results (180 nm, 55 nm SPADs)

• Cryogenic characterization setup

• Preliminary results for 10 SPAD samples

• 55 nm (irradiated), 110 nm (non irradiated)

• Summary
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Abbreviations:

SPAD: single photon avalanche photodiode

SiPM: silicon photomultiplier

Vbr: breakdown voltage

OV: over-voltage, excess bias

DCR: dark count rate

PDP: photon detection probability

PDE: photon detection efficiency (=PDP * geometric efficiency)



Background

• Planned upgrades of Ring Imaging Cherenkov (RICH) detectors

• LHCb, Belle II, ALICE3

• High performance requirements for photodetectors

• Silicon Photomultiplier (SiPM)

• main candidate

• main issue: neutron radiation damage
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LHCb RICH Upgrade II Photodetector Requirements

Radiation hardness

2 x 1013 neutron eq/cm2

12 kGy TID

1 x 1013 HEH (>20 MeV)/cm2

Timing
100 ps FWHM SPTR

few ns gate / 25 ns (40 MHz bunch-crossing)

Maximum occupancy 30% 1-photon hit probability / mm2 /25 ns

Total area 1.5 m2 + 2 m2

Granularity 1.4x1.4 mm2 / 2.8x2.8 mm2

PDE 50% @ 400 nm

DCR ~100 kHz – 1 MHz/mm2

Cooling 100K (liquid nitrogen cooling) considered as an option

Annealing In situ annealing considered

LHCb RICH1:



spadRICH Project

• Develop radiation-hard photosensor optimized for RICH application

• Based on SiPMs including reconfigurable electronics  digital analog SiPM

• Radiation hardness achieved by means of:

• rad-hard design techniques at transistor and SPAD level

• integrated compensating electronics  switch off noisy SPADs, employ 
active recharge and custom hold-off times

• microlenses  smaller SPADs

• Possible SPAD/architecture optimizations in a RICH detector scenario:

• limited photon angular acceptance (NA)  reduce SPAD size (DCR↓), compensate with microlenses

• timing resolution, gated operation  reduce DCR and data rates

• cryogenic (liquid nitrogen) operation  reduce DCR, but potential increase in afterpulsing (irradiated samples)
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DOI: 10.1109/NSSMIC.2017.8533036



Cooling
(1011 n/cm2, 
average, 
after 2w RT 
annealing):

SiPM and CMOS SPAD characterization at liquid nitrogen temperatures 5

Previous Results - 180 nm CMOS SPADs

• SPADs: 25 µm diameter, passively quenched/actively recharged

• Neutron irradiated at JSI TRIGA reactor up to 
1012 1-MeV neutron equivalent/cm2

DOI: 10.3389/fphy.2022.849237
DOI: 10.3390/s22082919
IEEE NSS/MIC 2023 N-01-135

Dark count rate (DCR) of 4 SPADs/chip:
1010 n/cm2 1011 n/cm2 1012 n/cm2

Afterpulsing probability:
(1012 n/cm2)

~ ½ per 10°C

DCR before irradiation



Previous Results - 55 nm CMOS SPADs
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Total SPAD 
diameter:

NB: active area changes 
between samples



Cryogenic SPAD characterization

• Study different SiPM technologies (SPADs, micro-lenses, electronics…)

• Before and after neutron irradiation

• At stabilized temperatures between room temperature (RT) and liquid nitrogen (LN) temperatures

• Can measure

• IV curves

• Threshold scans (rate vs. threshold)

• Waveform analysis (DRS4 chip)

• Limitations:

• Measurement time: max. 2 SPADs/day

• Lowest measurable DCR: individual count measurement of 1 s

• PDP results affected by optical fiber movements (when moving into LN after RT measurement)

SiPM and CMOS SPAD characterization at liquid nitrogen temperatures 7

DOI: 10.1140/epjc/s10052-024-13302-7

Poster: Radiation hardness and annealing study
of neutron-irradiated silicon photomultipliers

This presentation



Experimental setup
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Front-end 

with pre-amp

PT100 sensor

Chip carrier with 

cooling solution

RF shielding box

Optical fiber port

Resistive heaters

(back side)

• Pre-amp: NEC muPC2710TB (1GHz bandwidth, 33dB)

• Attenuator: Phillips Scientific 804

• Amplifier: ORTEC FTA820 (350MHz bandwidth, 200x, inverting or 

non-inverting)

• Discriminator: Phillips Scientific 7106 (140MHz frequency

• Scaler: CAEN C 257 (24 bit counter, 100 MHz frequency)

• Laser: ALPHALAS Picosecond Laser Diode PLDD-20 M (405 nm)

• Optical power meter: Thorlabs S150C + PM101A (350 -1100nm, 100 pW - 5 mW)

• Optical splitter: Thorlabs TM200R5F1A (50:50 split, 200 mum, 0.22NA multimode fibers)

• Optical attenuation: ND filters + Thorlabs VOAMMF variable optic attenuator

Thermal isolation

• SPAD samples wire bonded on 

chip carrier

• Optical attenuation adjusted so laser @ 100 kHz rate 

results in ~1kHz SPAD rate above DCR

• PC controlled shutter for DCR measurements

• Scaler settings: 1 s count time, 10 mV threshold steps

• BR and temperature coefficient estimated on-the-fly

• Measurement started 10 min after temperature stabilized 

(distance between PT100 and SPAD)

SPAD samples:

External quenching

resistor



Measurement protocol and monitoring
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DCR measurement

PDP measurement

Temperature stabilization

-20 °C25 °C -60 °C -100 °C -140 °C ~ -180 °C

• Temperature and laser optical power monitored

• Temperature stabilized at predetermined steps



Threshold scans

 rates with laser (○) - rate & pulse height estimated from fitted with error function

 dark counts (□) - when very low: rate from average of counts
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Sample 527 (110 nm, 10 µm/N+)
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Data analysis
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 Rate vs. bias voltage (incl. correction for on-the-fly estimated Vbr)  Pulse height vs. bias voltage  Vbr

Sample 527 (110 nm, 10 µm/N+)



Results
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 10 SPAD samples measured so far:

(1)

(2)

(3)

(3)

(3)

(1) No signal (not due to irradiation, wire bond broken?)

(2) Extreme radiation damage: constant discharges, Vbr shift

(3) Excessive rates at LN (afterpulsing, carrier freezout?)



Results - DCR
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5 µm/P+ 5 µm/N+

110 nm

25 µm/N+10 µm/N+



Results - DCR
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55 nm

NP/1010 n cm-2 NP/1011 n cm-2

PN/1010 n cm-2 PN/1011 n cm-2



 Rates measured with 405 nm laser

 Laser trigger rate @ 100 kHz

 Light attenuated so SPAD detection rate ~  1 kHz

 DCR subtracted

 Relative PDP (normalized to -20°C point, for each OV)

 Afterpulsing etc. included

Data analysis – Relative Photon Detection Probability
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Sample 527 (110 nm, 10 µm/N+)



Results - PDP
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5 µm/P+ 5 µm/N+

110 nm

25 µm/N+10 µm/N+



Results - PDP

SiPM and CMOS SPAD characterization at liquid nitrogen temperatures 17

55 nm

NP/1010 n cm-2 NP/1011 n cm-2

PN/1010 n cm-2 PN/1011 n cm-2



Case (2) Extreme radiation damage
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Sample 335, NP/1012 n cm-2

RT, Vbr – 4V RT, Vbr LN, Vbr – 1V, laser trigger

SPAD signal

Laser trigger

Scaler input

Discharges well below BR Extremely high rate @ RT
Some laser correlation 

regained at LN



Case (3) Excessive rates at LN 

SiPM and CMOS SPAD characterization at liquid nitrogen temperatures 19

Sample 527 (110 nm, 10 µm/N+)

RT -190°C

SPAD signal

Laser trigger

RT: Discrete signals
LN: High rate,

continuum of signals

Closer look,
lower trigger



Summary

• Planned RICH detector upgrades  high photodetector requirements

• spadRICH project: monolithic dSiPM for future RICH detectors

• SPADs samples (55 nm, 110 nm and 180 nm) for testing

• Neutron irradiation up to 1012 neq/cm2 @ JSI TRIGA

• Cryogenic CMOS SPAD characterization ongoing

• 10 SPAD samples measured so far

• Next steps

• Measure afterpulsing  actual PDP

• Study specific behavior of some SPADs at LN temperature

• Micro-lenses: irradiation effects and cryogenic operation

SiPM and CMOS SPAD characterization at liquid nitrogen temperatures 20
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Backup



Results – Vbr temperature coefficient
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5 µm/P+ 5 µm/N+

110 nm

25 µm/N+10 µm/N+

55 nm

NP/1010 n cm-2 NP/1011 n cm-2

PN/1010 n cm-2 PN/1011 n cm-2
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5 µm/P+ 5 µm/N+

110 nm

25 µm/N+10 µm/N+
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NP/1010 n cm-2

55 nm

NP/1011 n cm-2

PN/1010 n cm-2 PN/1011 n cm-2



Data analysis
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 Rates with laser Dark count rates

Sample 527 (110 nm, 10 µm/N+)Sample 527 (110 nm, 10 µm/N+)



LHCb RICH upgrade photodetector requirements
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• Fast timing

• Nanosecond front-end gate – background and data throughput reduction

• Picosecond hit timestamps – reduce combinatorial background

• Cherenkov angle resolution

• High granularity ~1x1 mm2 – also to reduce photon occupancy

• Enhanced sensitivity in green – enable chromatic error reduction

LHCb RICH occupancy (%)

Occupancy: 1-photon hit probability/channel/bunch crossing (25 ns)



RICH specific optimizations: Micro-lenses

• Small SPAD area  improved radiation hardness, microlenses  recover effective active area

• Simulated photon hit distributions in LHCb RICH (upper detector):
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Maximum required micro-lens acceptance half angle ≈ 6°
 Relatively modest NA ≈ 0.1 / f ≈ 5
 Good concentration factor possible

Possible position dependent optimization of microlenses
to further improve concentration factors

Charged particle

Cherenkov light emitted 
under characteristic angle

Photodetector plane


