

• Recent progress and new developments in photon-detectors such as SiPMs, MCPs, APDs, PMTs, Hybrid PMTs and digital photon-sensors

· Front-end, DAQ and trigger electronics

SFU SIMON FRASER

• Applications in particle and astroparticle physics, nuclear physics, nuclear medicine and industry

PD24 - Vancouver 19.11.2024

Istituto Nazionale di Fisica Nucleare

Photodetector system of the JUNO experiment

Stefano Dusini - INFN Padova on behalf of the JUNO Collaboration

JUNO: Jiangmen Underground Neutrino Observatory

2

JUNO is a **20 kton** multi-purpose underground

Main goal is the measurement of **Neutrino Mass**

Reactor anti-neutrinos

Nuclear reactors are **extremely intense, well understood** and \bar{v}_e -pure source

- Typical flux $\sim 2 \times 10^{20}$ $\bar{\nu}_e$ /sec/GWth
- Reactor neutrino allows for a **wide range of experimental baseline** (few m to 100 km) to explore **different oscillation feature**
- Detection via Inverse Beta Decay
- Prompt-delayed coincidence: energy, time, space
- Neutrino energy: $E_{\bar{\nu}_e} \sim E_{prompt} + 0.78 \; MeV$

Measure the reactor neutrino spectrum at 52.2 km from NPPs (first "solar" minima) to resolve the fast 0.8 oscillation driven by the interference between \overrightarrow{P}
 \overrightarrow{P}
 \overrightarrow{P}
 \overrightarrow{P}
 \overrightarrow{P}
 \overrightarrow{P} Δm^2_{31} , Δm^2_{32} and extract NMO $0,4$

JUNO experiments main goal

Requirement of the experiment

Large target mass: 20 kton liquid scintillator (LS)

✓ Large statistics

• Excellent energy resolution: 3% at 1 MeV

- **✓** Large photocathode coverage
- **✓** High photon detection efficiency

• Highly transparent liquid scintillator

• Control of energy scale and systematics

✓ Calibration and quality control of PMTs

JUNO detector design

- Huge homogenous calorimeter
- **20 kton** Liquid Scintillator
	- $\sqrt{\omega}$ 52 km from NPP ~2.3 reactor IBD/day/kton
- **• Precise and accurate energy reconstruction** ✓Energy resolution: **< 3% @ 1 MeV** ✓Energy calibration: **< 1%**

JUNO detector design

Photomultipliers system

V Photocathode coverage **~78 %**

V light level of **1660 pe/MeV**

stefano.dusini@pd.infn.it

S-PMT

To ensure **high photon statistics** to reach required energy resolution and mitigate possible systematics JUNO is equipped **with 2 PMT system:**

20" PMTs and **3" PMTs**

- Hamamatsu Photonics **R12860-50 HQE** (SBA)
- Box and linear-focused dynode PMT
- **Excellent time resolution** for vertex reconstruction
- High detection efficiency
- **5000 PMTs** in the central detector only

20" PMTs • 5000 dynode-PMTs are from Hamamatsu company.

Γ 10-stage

- **IHEP & NNVT jointly developed** technologies & prototypes **e** IHEP & NNVT jointly developed technologies & prototypes
	- **Microchannel plate** (MCP) technology for amplification \mathbf{R}^2 (IVICP) lectricology for amplification
	- Optimised collection efficiency via **transmission + reflection** photo cathode POLICITUS VIA LI ANDINISSION T $\overline{\text{O}}$ callicum callicum $\overline{\text{O}}$
	- **12612** in the central detector + **2400** in the veto \sim \sim \sim Anode Dark Count Hz 20K, < 30K 10K, < 50K

40K: 40 ⁶

20'' PMT Electronics

- 1 Gsps, 12-14 bits ADC
- Energy resolution 10% $@$ 1-100 pe, 1% $@>100$ pe
- **• Large dynamic range: 1-4000 pe**
	- Low gain (8:1) 0~7.5V (0-4000 pe)
	- High gain (1:1) 0~960 mV (0-128 pe)
- Excellent **photon time stamp**
- Global and self-trigger support
- **Negligible dead-time** for supernova event
- Aerospace-grade reliability: **< 0.5% underwater electronics failure in 6 years**
- Power consumption: < 10 W/channel

Waterproof and cooling test at -40 m

Bellow to PMT

Bellow to PMT

- Calibrating charge non-linearity of 20" PMTs and their electronics ✓**photon-counting vs. waveform deconvolution** ◆ more in Akira Takenaka talk of this workshop • **Extend JUNO energy and rate range**: muons, nearby supernova
- Semi-independent measurement of θ_{12} , Δm^2_{21}

SPMT Under Water Box

- 128 ch. PMTs,
- 8 connectors, 16PMTs/connector
- 8 High voltage modules + 8 spares
- 2 High voltage splitter boards
- 1 Front-End + digitalisation Electronics (ABC)
- 1 Global Control Unit (GCU)

3'' PMT Electronics

2021JInst..16P5010J

20" PMT testing & characterisation Eur. Phys. J. C (2022) 82:1168

To ensure the required quality all 20" PMTs have been tested and selected base on stringent criteria

Helmholtz coils to suppress to test the magnetic field sensitivity in the range \pm 50 µT.

20" PMT testing & characterisation Eur. Phys. J. C (2022) 82:1168

Two dark rooms with rotating stage to scan the surface of the PMTs Scan on **5% of the PMTs**

20" PMT gain and HV optimisation

With a mean illumination $\mu = 0.1$ pe HV at which the gain G is 1×10^7

Eur. Phys. J. C (2022) 82:1168

14

20" PMT single photoelectron features

Eur. Phys. J. C (2022) 82:1168

At the operating voltage $(G=107)$ **20k waveforms** per PMT have been acquired with a mean illumination of **μ = 0.1 p.e.** to extract the SPE characteristics

For MCP the SPE is not really Gaussian distributed due to long tail, but the resolution is anyway a good parameter to measure the relative spread of charge response. res < 40% for central detector

20'' PMT testing & characterisation

About 3000 20" PMTs have been scanned to measure the uniformity of their response.

Very uniform PDE both in zenith and azimuthal.

PDE vs azimuth angles

3" PMT production and test NIM-A (2021) 1005,165347

• Assembly done by HZC.

-
- Acceptance test base on three class of parameters (A) all PMTs by HZC, 10% by JUNO (B) 3% of PMTs randomly selected by JUNO (C) 1% of PMTs randomly selected by JUNO

JUNO Expected performance

The expected **JUNO energy resolution** is **2.95% @ 1MeV** from a full simulation which include PMTs, LS and acrylic properties, calibration and reconstruction.

Main changes vs design *[JHEP03 (2021) 004]*

- $\sqrt{\frac{1}{27\%}}$ \rightarrow 30% *[\[EPJC \(2022\) 82, 1168\]](https://doi.org/10.1140/epjc/s10052-022-11002-8)*
- $\sqrt{\text{New PMT}}$ optical model: $+8\%$ *[\[EPJC \(2022\) 82, 329](https://doi.org/10.1140/epjc/s10052-022-10288-y)]*
- $\sqrt{\ }$ New central detector geometry and LS: $+3\%$

Total photon statistics **~ 1660 PE/MeV**

tallation tall Implosion protection system **PMT Installation**

 $\frac{1}{2}$ Gap between cover and PMT 2 mm

(JINST 18 (2023), P02013)

Acrylic

cover

Final test: **no chain reaction**

Installation status:

Almost completed: **> 99.5% of PMTs and UWB installed**

- Regular light-off test during detector assembly: ✓Light off tests: full data taking and processing chain with PMT HV on ✓Light on tests: joint elec./trigger/DAQ/DCS test with PMT HV off
- Very good electronics, shielding and grounding
- Performances of tested PMTs are good

 $\sqrt{\frac{1}{2}}$ Electronic noise is 2.8 ADC counts, 4% of SPE ◆ Much better than design of 10% of SPE

PMT system commissioning

✓Electronic noise is 2.8 ADC counts, 5% of SPE ✓Much lower than trigger threshold of 1/3 pe

JUNO-TAO Taishan Antineutrino Observatory

• Satellite experiment of JUNO to **measure reactor spectrum** with

 —> reduce JUNO's reactor spectrum **uncertainty**

• 44 meters from Taishan NPP core (4.6 GWth) \rightarrow 700 k-events/year

- **sub-percent E resolution**
-
-
-
-
- 2.8 tons (1t fiducial) of Gd loaded liquid scintillator at -50° C (LAB + 2 g/l PPO, 1 mg/l bis-MSB, 0.05% ethanol and 0.1% Gd by weight)

• Energy resolution: ∼ 1.5 % / *E*

 \bullet 10 m² SiPM, $> 94\%$ photo coverage)

• SiPM operated at -50° C to reduce dark rate by factor 1000 to 100 Hz/mm²

 $2.9.$ HAMAMATSU Photonics, Specification Sheet MPPC (S16088), Δ

 \sim 22 μ m2 \sim 0.1 μ over \sim 0.1 μ over \sim 0.1 μ over \sim 0.1 μ

Status of detector construction

- Stainless steel structure completed
- **• Installation of PMTs and electronics is almost completed > 99.5%**
- **expected to be completed by end of November 2024**
- **plan to begin filling before the end of the year**
- **Acrylic vessel completed** (13/10/2024)
- High transparency (> 96%) 12 cm acrylic panels
- Total mass ~ 600 ton
- Radio purity < 1ppt U/Th/K

• JUNO construction is nearly completed

- Start of **data-taking in 2025**
- JUNO is a major step in Liquid Scintillator detector design
	- 20 kton mass, 78% photocathode coverage
	- First dual readout LSD: 17k 20" PMT + 25k 3" PMT
	- Energy resolution 2.95% @ 1MeV
- Physics goals
	- **3σ NMO** median sensitivity in ~7 years with reactor only neutrinos via oscillation vacuum
	- Sub-percent precision Δm^2_{21} , $\sin^2\theta_{12}$, Δm^2_{31}
	- Synergy and complementarity with NMO measurers at LBL accelerator
	- \bullet + solar, + geo-neutrinos, +supernova, +DSNB, +p-decay….

Thank you

Since 2014, >700 collaborators from 74 institutions in 17 countries/regions

Backup

20" PMTs size and weight

the total number of tested PMTs is slightly reduced. Left: HPK; Right: NNVT

Fig. 8 Measured diameter in mm of all checked 20-inch PMTs. Some PMTs were rejected before the measurement after visual inspection, therefore

Transit Time measured with the LED of the scanning station.

strength tested with 9 HPK and 15 NNVT PMTs

PDE vs MF

Fig. 32 Averaged PMT PDE versus remaining magnetic field (MF)

Relative variation of the measured PDE of the monitoring PMTs (HPK PMTs tagged by "EA", NNVT PMTs tagged by "PA") at the container system, before and after a correction based on a recalibration at the end of the regular testing period

Liquid Scintillator

The energy resolution is related to the total number of photon detected

- ✓ high light yield
- ✓ light spectra matching PMT detection efficiency
- ✓ good liquid scintillator transparency

JUNO "recipe" : Solvent: **Linear Alkyl Benzene (LAB)** Fluor: **2.5 g/l PPO** Wavelength shifter: **3 mg/l bis-MSB**

- Optical impurities reduce transparency
- Radioactive contaminants yield background events
- Measured liquid scintillator attenuation length **> 20 m**
- **Contamination during the commissioning** of the purification plants
	- \bullet **U** < **1.9 x 10⁻¹⁶ g/g** [solar physics < 10^{-17} g/g]
	- **Th < 1.5 x 10⁻¹⁶ g/g** [solar physics $<$ 10⁻¹⁷ g/g]

JUNO Physics performances

• **3σ sensitivity** in 7.1 years

[arXiv:2405.18008](https://doi.org/10.48550/arXiv.2405.18008)

With 26.6 GW_{th} $(11/12$ duty cycle) • 47.1 IBD events per day in FV \bullet 4.1 backgrounds (B/S = 8.7%)

More details in Dmitrii Dolzhikov talk [JUNO's Physics with Reactor Antineutrinos](https://indico.cern.ch/event/1414470/contributions/6146855/) 24 October 2024 08:40

\overline{a} times the statistics-only limit. The statistics-only limit is \overline{a} \mathbf{A} summary of precision parameters. The oscillation parameters \mathbf{A} and \mathbf{A} Δm_{31}^2 , Δm_{32}^2 , $\sin^2 \theta_{12}$ **Sub-percent measurement of 3 (out of 5) oscillation parameters**

JUNO experiments

Measure the reactor neutrino spectrum at the first solar minima to

-
- **• Large statistics**
- **• Control of energy scale and systematics**

Reactor experiments

In reactor neutrino experiment we measure the $\bar{\nu}_e$ survival probability $P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$

$$
P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)
$$

$$
- \sin^2 2\theta_{13} \cos^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)
$$

$$
- \sin^2 2\theta_{13} \sin^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)
$$

$$
- \sin^2 2\theta_{13} \sin^2 \theta_{12} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)
$$

One strong hierarchy between mass eigenstate

$$
\frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} \sim \frac{1}{30}
$$

allow to test the different component changing the baseline

