

Berkeley

1

LightPix: Scalable readout for SiPMs in cryogenic environments

Stephen Greenberg

for Jaafar Chakrani, Dan Dwyer, Carl Grace, Armin Karcher, Tarun Prakash, Brooke Russell, Kevin Wood, Panos Zarkos

PD24 Workshop, November 20, 2024

Large Area Cryo-SiPM Challenges

High readout burden→high power, summing electronics

- Minimize cabling + cryostat penetrations → prefer cold electronics
 - Very low power required to prevent boiling
 - Cryo-robustness
- High granularity→high channel count electronics or SiPM summing/ganging
- High dark count rate

DUNE PDS, from TDR: https://iopscience.iop.org/article/10.1088/ 1748-0221/15/08/T08010

Background: LArPix Scalable cryo-readout

3D Cryo-Readout for Ionization Electrons in LAr

- 64 self-triggering channels per ASIC
 - Per channel tunable thresholds
- Low power analog front-end <200 uW/channel
- Highly multiplexed digital I/O
 - 10,240 channels/cable
 - 102,400 channels/warm controller
- Scalable at cost (O(\$0.10) per channel, including cables/controllers/assembly/etc.)

LArPix pixel tile PCB with 100 ASICs

Background: LArPix Scalable cryo-readout

https://doi.org/10.3390/instruments8030041

LightPix/LArPix Full Detector System

- Single cable per tile carries power/data/configuration commands
- Control and DAQ from PACMAN board at cryostat feedthrough
- Data streamed continuously over ethernet to host machine

LightPix Concept

R&D towards scalable cryo-SiPM readout

- Cryo-compatible, 'pixelated' SiPM readout
- LArPix scalability and shared digital core
 - Low-swing differential I/O and 'Hydra networking'
 - Demonstrated manufacturing: full-industry, O(10⁶) channels produced
 - Readout of $>10^5$ channels/cable with PACMAN controller
- Unique channel for every SiPM (no analog ganging) \rightarrow Highly granular detector

LightPix Versions

- All ASIC versions in TSMC 180nm CMOS
- TDC with (sub-)ns precision
- Tuneable hit coincidence requirements (1-64 channels hit over 100 ns-13 µs)

ASIC Version	Analog Front End	Digital I/O	Calorimetry?	Received
1	CSA	Single-ended	Ν	Aug. 2021
2	CSA	Single-ended	Ν	N/A
3	TIA	Differential	Y	Nov. 2024

LightPix-v1 ASIC

O(ns) TDC performance and hit coincidence logic

- Functional digital core and hit coincidence logic
- TDC evaluation for ~SPE inputs
 - Linear to <1 ns over 100 ns timing range
 - < 1 ns jitter</pre>
 - < 2 ns time-walk bias</p>
- Compromises in design
 - Front-end (CSA) recycled from LArPix
 - Strong pickup from clock/single ended I/O

LightPix TDC ~ns Precision w/ Charge Injection

LightPix-v1 LArTPC Readout

Direct VUV Light Detection in LArTPC

- Proof of concept for joint charge/light readout
- Direct VUV SiPMs visible to active LAr volume
- SiPM PCB attaches directly to LArPix tile
- 1 LightPix ASIC / 16 SiPM channels/board
 - SiPMs ~5mm behind anode plane
- Single PACMAN controller, two shared data/power cables

HPK Direct VUV SiPMs (3mm x 3mm)

Stephen Greenberg | BERKELEY LAB

LightPix-v1 LArTPC Readout

Direct VUV Light Detection in LArTPC

High Purity test stand at LBNL with SingleCube 30cm drift LArPix TPC

Assembled 30cm drift and LArPix TPC with LightPix SiPM board

Stephen Greenberg | BERKELEY LAB

GHe Neutron Detector

Room temperature detector with GHz DCR suppression

- R&D towards novel room temp neutron detector
 - High pressure (10-15 bar) GHe+% level GAr
 - − 300 3x3 mm² direct VUV SiPMs \rightarrow GHz DCR
- 1 LightPix ASIC / 50 SiPMs
 - − No summing/ganging→fully pixelated
- First prototype goals: demonstrate neutron sensitivity with DD neutron generator
 - Scientific goals: understanding helium scintillation and excimer formation
- Decoupled SiPM / LightPix readout boards→potential for upgrade with newer LightPix versions

50 3x3 mm² SiPMs on single detector wall

GHe test stand at UC Berkeley

GHe Neutron Detector

Room temperature detector with GHz DCR suppression

LightPix-v3 Design

- Significant re-design of ASIC analog front-end (AFE)
 - Increased power budget and decreased gain requirements: move from CSA to TIA
- 32 "super channels" with sub-ns timing+energy •

CSA

Fully differential clock and digital I/O •

VBIAS

SiPM

LightPix-v3 Status

- Design started Spring '24
- Submitted as multi-project wafer Summer '24
- First die in hand Nov. 12!
 - Verified basic functionality and power
 - Verified new digital features and low-swing differential I/O

Next few weeks: characterization of new front end (TIA) and calorimetric performance

LightPix-v3 bare die on test PCB from Nov. 2024

Next Generation Detectors

LightPix features aligned with community needs

- Major focus on enhanced photon detection systems and increased SiPM channel count for DUNE FD3/4
- LightPix suitable to retain granularity, ns timing

SoLAr-v2 design (left) and realized prototype (right) from S. Parsa

eft) and right)

SoLAr: https://arxiv.org/abs/2203.07501

Stephen Greenberg | BERKELEY LAB

Example: "VD Optimized FD3" w/ enhanced PDS (*F. Cavanna*) https://indico.fnal.gov/event/59908/

Summary

LightPix: scalable cryo-SiPM readout

- LightPix: maintain granularity in large area cryogenic applications
 - Utilizing technologies demonstrated by LArPix
 - Synergy with LArPix for scalable combined detectors
- Proof-of-principle demonstrations with LightPix-v1
 - LArTPC light readout with direct VUV technology
 - Room temperature GHe neutron detector
- Next generation ASIC with considerable front-end improvements
 + calorimetry in hand
- Suitable for large scale experiments
 - O(ns) timing, granular, low occupancy

LightPix-v1 die in 180nm CMOS

SiPM integrated with LightPix in

Backup

LArPix ASIC

3D Cryo-Readout for Ionization Electrons in LAr

- 64 self-triggering channels per ASIC
 - Charge sensitive amplifier
 - Per channel tunable thresholds
- Low noise, low power analog front-end
 - <200 uW passive per channel</p>
 - ~800 e- ENC rms
- Highly multiplexed digital I/O
 - 6400 channels/cable
 - 51,200 channels/warm controller
- Scalable at cost (O(\$0.10) per channel, including cables/controllers/assembly/etc.)

LArPix/LightPix Self-Trigger Cycle

CSA does not reset until end of burst.

LArPix / LightPix Co-Design

Single-cable charge+light readout in LArTPC

- Interest in direct light detection with VUV SiPMs integrated into TPC anode
 - E.g. SoLAr concept
- Chip-to-chip I/O is ASIC-family independent
 - LArPix+LightPix: shared power/IO/single cable

LArPix/LightPix dual charge+Light anode prototype design

