Scintillation Imaging in GRAIN Liquid Argon Detector

Alessandro Montanari INFN – Sezione di Bologna

6° Internation Workshop on New Photon Detectors – 20 Nov 2024

LAr readout: state of the art

- The state of the art readout technique (*Time Projection Chamber*), pionered by ICARUS detector, uses both ionization charges and scintillation light produced by charged particles in LAr:
 - Ionization electrons are drifted in a uniform electric field to a segmented (wires or pads) anode, allowing the 2D reconstruction of the track
 - The drift time, calculated from the reference time of scintillation light, allows to reconstruct the third coordinate, knowing the drift velocity
- The LAr TPC is the technique with the best tracking capability but has some limitation:
 - The rate capability is low due to a drift time O(msec)
 - High Voltage is needed for a uniform drift field in big volume

An innovative technique

- Scintillation of Argon produces about 40 ph / KeV for m.i.p. (1000 ph / 100um): Can we use only scintillation light for track imaging??
- Challanges:
 - Liquid Argon scintillation is in the VuV (128 nm)
 - Need a new kind of camera with VuV optics
 - The photon detector must be sensive to VuV
 - The camera has to operate at 87 K
- Advantages:
 - High rate capability (μsec)
 - Insensitive to magnetic field
 - Simple and robust

DUNE experiment

- High intensity neutrino beam from Fermilab
- Near Detector at 575 m + Far Detector at 1500 km (in gold mine 1300 m deep)

Physics program: mass hierarchy, v oscillations, CP violation, Supernova, BSM

The SAND Detector

- It is one of three elements of the DUNE Near Detector Complex:
 - Re-use of KLOE Magnet and ECAL
 - New Gas Tracker and Liquid Argon «active target»

GRAIN, the active Liquid Argon target in SAND

- A 1 ton target in light cryostat
 - Constrain nuclear effects on Argon
 - Argon target permanently located on-axis for crosscalibration, complementary to NDLAr,

Imaging in GRAIN

- Coded Aperture Masks or VuV lenses for the optics
- Matrices of Silicon PhotoMultipliers as single photon sensor with high dinamic range
- Wave Length Shifter coating of SiPM entrance window (TPB)
- New *cryogenic ASIC*, low power and high density of channels (1024)
- R&D for a new generation of *Backside Illuminated SiPMs*

Coded Aperture Masks

CINFN DUNE

The VUV camera

- 32x32 matrix of SiPMs (3x3 mm²)
- Mask with 50% holes
- 60 cameras in GRAIN

Track reconstruction

- Directly reconstructs in 3D dimensions the initial photon source distribution in a segmented volume (voxels)
- Combines information of multiple cameras at once
- Maximum Likelihood Expectation Maximization (MLEM) algorithm:
 - Iteratively converges to the photon source distribution that maximizes the likelihood of detecting the observed images
- Implemented for execution on (multiple) GPUs

Vertex resolution ~20 mm

INFN

• Simulated 0.3 t LAr

ĪNFŇ

• Simulated 0.3 t LAr

Optics with lenses

- Two types of lenses (Fused Silica or MgF2)
- SiPM (2x2 mm²) matrix rank 32x32

Reconstrution with lenses

- 2 steps algorithm
- 2D analysis of the camera images
- 3D matching of the different tracks based on projective geometry

- Vertex resolution ~20 mm
- Energy resolution ~18%

The new ASIC

- We need an ASIC with 1024 channels, measure time and charge, low power
- Reuse modules of ALCOR chip as much as possible

Parameter	Value
SiPM Size	2 x 2 mm² (140 pF) 3 x 3 mm² (500 pF)
# Channels/ASIC	1024
Operating Temperatures	300 K – 77 K
<power consumption=""></power>	5 W / cm² ◊
Duty Cycle	On ≥ 9.6 µs (50 µs) Off ^{◊◊} < 0.1 s
Measurements:	Q – ToA - ToT
Measurements: Integrator Dynamic Range	Q – ToA - ToT > 100 PE
Measurements: Integrator Dynamic Range RMS _{ToA} (first PE)	Q – ToA - ToT > 100 PE 100 ÷ 150 ps / 1PE
Measurements: Integrator Dynamic Range RMS _{ToA} (first PE) RMS _{ToT}	Q – ToA - ToT > 100 PE 100 ÷ 150 ps / 1PE ≈ ns
Measurements: Integrator Dynamic Range RMS _{ToA} (first PE) RMS _{ToT} Threshold	Q – ToA - ToT > 100 PE 100 ÷ 150 ps / 1PE ≈ ns 0.5 x 1PE

INFN-Torino project

New ASIC architecture

- Architecture under evaluation:
 - Python model of Front-end fed with photons expected in a spill
 - Working chip in 2027

Demonstrator

- SiPM matrix 16x16
- Readout board with 8 x ASIC 32 ch ("ALCOR" from INFN-Torino)
- RO board can be coupled to Lens or Mask

Tests on Demonstrator

- Verification of firmware, control, daq
- Calibration using a laser source

Test of Demonstrator in LAr

- Test demonstrator with artificial light sources and cosmics, in a small volume of Lar
- Test final cameras (1024 channels) in 2027

Backside Illuminated SiPM

• INFN has a joint project ("IBIS") with FBK-Trento for the development of BSI SiPM

INFŃ

BSI premium features

- In our application we are interested in improving *VUV efficiency* and *integration* with high density ASIC:
 - no metallizations are on the Back Side: better Fill Factor
 - clean, flat entrance window, suitable for advanced processing to enhance PDE (decreased reflection/absorption)
 - all contact are on the Front Side allowing high density wafer-level bonding to a readout ASIC, smaller pixels for better resolution (if needed)

• First BSI SiPM prototypes expected in Spring 2025

Thanks

Ideas for ND Phase II: charge + light readout

- Coded Aperture Masks are pixelated and form the anode.
- A Cathode grid is added in the middle to form a TPC with horizontal drift.
- Standard mask on top and bottom
- Combined reconstruction of tracks by scintillation light and charge readout allows to solve superimposed events
- Charge identification thanks to magnetic field

Dual Purpose Camera

- Holes in a FR4 (or else) form the Coded Aperture Mask
- 3x3 mm² metallic pads are placed in the mask positions free from holes (50% surface)
- Dedicated ASICs read the charge and SiPM response to light

Reconstruction Algorithms

- For *far* field imaging (i.e. astrophysics):
 - the original image can be obtained with a deconvolution process where the decoding matrix is derived from the mask pattern. The pattern matters here.

- For *near* field imaging:
 - more complex and computationally intensive algorithms can be implemented: Filtered Back Projection, Maximum Likelihood Expectation Maximization. Pattern can be random.

Maximum Likelihood Expectation Maximization (MLEM)

- Directly reconstructs in 3D the initial *photon source distribution* in a segmented volume (voxel array):
 - measured photons from all cameras are propagated back into the LAr volume with an appropriate weight, which is added to the voxel value
 - this weight represents the Bayesian probability of the voxel to be a source of the detected photons.
 - The *likelihood* of the resulting photon source distribution having produced the raw data is *maximized* through an iterative process.

MLEM technique

• Photon counting is described by a Poissonian pdf:

$$f(H_{s}|[\lambda_{s}]) = e^{-[\lambda_{s}]} \frac{[\lambda_{s}]^{H_{s}}}{H_{s}!}$$
$$[\lambda_{s}] = \sum_{j} \lambda_{j} w(j, s)$$

- H_s is the number of photons detected on sensor s (raw data) λ_i is the (unknown) photon source value in voxel j $[\lambda_s]$ is the expectation value of the detected photonsw(j,s)is the weight (a very large precalculated matrix)
- The likelyhood for all sensors must be maximized (iteratively) [3]

$$\prod_{s} e^{-[\lambda_s]} \frac{[\lambda_s]^{H_s}}{H_s!}$$

$$I_{j}^{k+1} = \frac{\lambda_{j}^{k}}{\sum_{s} w(j,s)} \cdot \sum_{s} \frac{H_{s} \cdot w(j,s)}{\sum_{j} w(j,s) \cdot \lambda_{j}^{k}}$$

