Spectral Photon Sorting for Neutrino Detectors

- Hybrid Cherenkov/Scintillation Neutrino Detection
- Spectral sorting with dichroicons
- Benchtop performance
- Deployment in Eos Demonstrator

Josh Klein (for Sam Naugle) University of Pennsylvania

But:

- 100x more scintillation light in scintillator than Cherenkov light
- `Chertons' are buried by `scintons'
- And need detector to be very big...

Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8

THE EUROPEAN		0
Physical Journal	С	Che

Regular Article - Experimental Physics

THEIA: an advanced optical neutrino detector

M. Askins^{1,2}, Z. Bagdasarian³, N. Barros^{4,5,6}, E. W. Beier⁴, E. Blucher⁷, R. Bonventre², E. Bourret², E. J. Callaghan^{1,2}, J. Carravaca^{1,2}, M. Divan⁶, S. T. Dye⁶, J. Etsch¹⁰, A. Elagin⁷, T. Enqvisti¹¹, V. Fischer¹², K. Frankiwei^{1,3}, C. Grant^{11,4}, D. Guffanl¹⁴, C. Hagner¹⁵, A. Hallin¹⁰, C. M. Jackson⁷, R. Jjang⁷, T. Kaptanoglu⁴, J. R. Klein⁴, Yu. G. Kolomensky^{1,2}, C. Kraus¹⁸, F. Krennrich¹⁰, T. Kutter¹⁰, T. Lachenmaie¹⁰, B. Land^{1,2,4}, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova³, M. Malek²¹, S. Manecki^{18,22,23}, J. Maneira^{5,6}, J. Martyn⁴, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova³, M. Malek²¹, S. Manecki^{18,22,23}, J. Maneira^{5,6}, J. Martyn⁴, L. Oberauer²⁷, G. D. Orebi Gann^{1,2,4}, J. Ouellet²⁵, T. Pershing¹², S. T. Petcov^{32,0}, L. Pickard¹², R. Rosero⁸, M. C. Sanchez¹⁰, J. Sawatzk¹⁷, S. H. Sco¹¹, M. Smiley^{1,2}, M. Smy², A. Stahl¹⁵, H. Steige²⁷, J. M. Stock²⁷, H. Sune³, R. Svoboda¹², F. Tiras¹⁰, W. H. Trzaska¹¹, M. Tzanov¹⁹, M. Vagins³², C. Vilela³⁴, Z. Wang³⁵, J. Wang¹², M. Wetstein¹⁰, M. J. Wilking²⁶, L. Winslow³⁸, P. Wittich³⁵, B. Wonsak¹⁵, E. Worcester^{3,23}, M. Wurm¹⁴, G. Yang³⁴, M. Yeh⁸, E. D. Zimmerman³⁷, S. Zoolos^{1,2}, K. Zuber³

THEIA

- Low-energy physics using scintons
- High-energy with chertons
- Exploit *both* to do otherwise very difficult physics

THEIA-100 (kt)

See also: "Advanced Scintillator Detector Concept," arXiv 1409.5864

Named for Titaness of Light

Mother of Eos (Dawn), Helios (Sun), and Selene (Moon)

Hybrid Cherenkov/Scintillation Detectors Many Ways of Doing This

Past 5-10 years has seen rapid growth in exploring these approaches.

Spectral Sorting for Cher/Scint $N^{\gamma_{cer} \sim 1/\lambda^2}$

Scintillation

Spectral differences allow separation--could use filters or red-sensitive PMTs:

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Spectral Sorting for Cher/Scint $N^{\gamma}_{cer} \sim 1/\lambda^2$

But now we have lost a lot of our scintillation photons---can we instead **sort** the photons so they go to the right sensors...?

Spectral differences allow separation--could use filters and/or red-sensitive PMTs:

Spectrum

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Spectral Photon Sorting

If we sort photons efficiently:

- Can preserve most of the different signals
- Possibly increase overall light yield by viewing a broad-band spectrum by relevant sensor

Spectrum

Dichroic filters provide a sorting mechanism---how do we use this

in a large detector?

Winston-style light concentrator made out of dichroic mirrors can concentrate long-wavelength and pass short wavelength light (a "dichroicon")

Spectrum

Dichroic filters at aperture also allow scintillation light to be reflected back into detector for improved calorimetry

Spectrum

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Dichroicon at CHESS (LBNL) Pixellated sensors and high-energy source

Dichroicons Pixellated sensors and high-energy source

Dichroicon at CHESS (LBNL)

Dichroicons General Use Cases

- Makes sense for high light-yield scintillator
- Make sense for fast scintillator
- Make sense when available area is constrained
 - More Cherenkov light than just filtered PMTs
 - With "small" loss of short-wavelength light
- Makes sense when scintillation light is narrow-band and short
 - Or has a giant Stokes shift and is very long---does this exist?
- In combination with fast timing, can use shorter cut-on wavelength
 - Tolerate more scintillation leakage, get more Cherenkov light
- Best when PMT does not shadow other PMTs ("flower petal" configuration)
- Or with planar/pixelated photon sensors

Eos at LBNL

- Develop reconstruction methods leveraging scintons+chertons
- Test model of response

Eos at LBNL

- Note: PMT hemisphere inside cone doubles Cherenkov yield
- But no curved dichroic filters exist yet, so we use a longpass absorbing filter
- (Means we lose scintons that hit PMT bulb)

Eos at LBNL

Eos at LBNL

Dichroicons Eos at LBNL

Summary

- Hybrid Cher/scint detectors are a new direction for neutrino physics
- Spectral sorting allows cherton/scinton discrimination even in bright scintillator
- Benchtop performance looks good!
- Performance tests at Eos coming very soon

Funded by: US DOE LBNL DE-AC02-05CH11231; DOE/NNSA/DNN R&D; DOE/HEP DE-SC0018974

Backups

Theia

- Using full dichroicon model, implemented in Chroma GPU ray-tracer
- Developed simple timing and angular reconstruction for vertex and direction

- Implemented measured dichroic filter transmission and reflection curves in Chroma model
- Have full PMT QE curves
- Complete PMT timing response
- Optical isolation of long-wavelength PMT

1000

-1.00

-0.75

-0.50

-0.25

Simple likelihood-based reconstruction so far

Reconstruction at 5 MeV

250

-1000

-750

-500

-250

 $\vec{x}_{true} - \vec{x}_{recon}$ (mm)

250

500

750

1000

2D PDFs for both chertons and scintons will do better

- Energy should be included, too
- Bayesian approach may help with scintillation leakage
- Machine learning?

0.75

1.00

0.50

0.25

0.00

 $\hat{d}_{true} \cdot \hat{d}_{recon}$

Only the surface has been scratched here---many other interesting problems

Community Interest

8

Instrumentation Frontier

P. Barbeau, P. Merkel, J. Zhang

8.2 Key Technology Needs and R&D

Dichroicons : Dichroicons, which are Winston-style light concentrators made from dichroic mirrors, allow photons to be sorted by wavelength thus directing the long-wavelength end of broad-band Cherenkov light to photon sensors that have good sensitivity to those wavelengths, while directing narrow-band short-wavelength scintillation light to other sensors. Dichroicons are particularly useful in high-coverage hybrid Cherenkov/scintillation detectors.

SNOWMASS NEUTRINO FRONTIER: NF10 TOPICAL GROUP REPORT NEUTRINO DETECTORS

3.1.4 Spectral Sorting and Dichroicons

One approach to separating Cherenkov and scintillation light is by discriminating photons by wavelength, as scintillation is typically within a narrow emission band, while Cherenkov is a broad spectrum of light, falling as roughly $1/\lambda^2$. $\mathbf{2}$

Photon Detectors

C. O. Escobar, J. Estrada, C. Rogan

5

2.2 Photon Detectors For Neutrino Experiments

Figure 2-2. Example of photon detector development for neutrinos: the dichroicon, from arXiv:2203.07479

Trichroicons...?

Three distinct QE regimes---blue, green, red Can stack dichroicons to direct photons to best collector

Increases light yield in a broadband, *very* photon-starved detector (e.g, low-energy Cherenkov)

Other Physics Use Cases

Photon Dispersion

- Time-of-flight difference between 400 nm and 600 nm over 60 m is
 - 0.5 ns for LAr
 - 1.5 ns for H_2O
 - 5 ns for LAB-PPO
 - Could LAPPDs let us see dispersion even in ANNIE??
- Measuring difference allows new handle on position reconstruction
- And more precise timing
- Photon Collection
 - Trapping (e.g. ARAPUCAs)
 - Detecting broader spectrum than single device can see
- Particle ID
 - LAr triplet state re-emitted by Xe
 - Wavelength dependence of LS tail...?

