Development of a picosecond-timing Cherenkov detector using gaseous photomultiplication

Ryogo Okubo^a,

Kodai Matsuoka^{abc}, Toru lijima^a, Kenji Inami^{ab}, Yasuyuki Horii^a, Kazuhito Suzuki^a,

Kazumichi Sumi^a, Tadaaki Ichikawa^a, Koichi Ueda^a, Shota Koji^a, Ayaka Kondo^a, Kotaro Chiba^a

Nagoya University^a, High Energy Accelerator Research Organization (KEK)^b, The Graduate University for Advanced Studies (SOKENDAI)^c

Introduction

High time resolution, **large area** are recent trends for Cherenkov and scintillation detectors in particle physics and nuclear experiments, for example, TOP counter at Belle II, TORCH for LHCb upgrade 2, and future upgrade...

Performance of existing photodetectors

	Single-photon time resolution	Sensitive area	Cost / area
SiPM (FBK near ultra violet, NUV) ¹	$\sigma = 63.9 \text{ ps}$	$3 \text{ mm} \times 3 \text{ mm}$	Middle
1" MCP-PMT ² (Hamamatsu, Channel diameter=10 μm)	$\sigma = 30 \text{ ps}$	23 mm×23mm	High
MCP-PMT(LAPPD) ³	$\sigma = 39 \text{ ps}$	$192 \times 192 \text{ mm}^2$	Middle (volume cost)
 SiPM: Silicon Photo Multiplier MCP-PMT: Micro Channel Plate Photo-Multiplier Tube LAPPD: Large Area Picosecond Photo-Detectors 	er Tube 3 https://doi.org/10.1088/1748-0221/11/10/P10016 2 https://journals.jps.jp/doi/abs/10.7566/JPSCP.27.011020 3 https://arxiv.org/abs/2309.15011		

We aim to realize a photodetector with a better time resolution, larger area, and lower cost.

PD24, Development of a picosecond-timing Cherenkov detector using gaseous photomultiplication (Ryogo Okubo)

GasPM

How to realize a photodetector with a high time resolution, large area, and low cost?

Gaseous detectors

 \rightarrow Advantages in scale and cost

How to achieve high-time resolution

1.Uniform structure

- 2. High electric field and narrow gap
- \rightarrow RPC–based photodetector with a narrow gap

1st prototype of GasPM

4 /15

Aim of the first prototype: Demonstration of the high-time resolution

Prototype design

Copper	sheet (50 μm) ↓	Synthetic	quartz plate (2.0 mm)
Kapton	sheet (120 µm)	TEMPAX FI	oat glass (1.1 mm) Graphite electrode –
	HNBR packin) ng (1 mm)	Copper electrode -
		Stainless stee	l chamber

Prototype

Expected time resolution

LaB6 photocathode

Low QE , but stable performance in gas and the air. \rightarrow Easy assembly

TEMPAX resistive plate

High resistivity $(10^{15}\Omega \cdot cm)$ \rightarrow To concentrate on the timing performance without being disturbed by discharge in the gap at all.

Prototype parameters

- Gap width 170 μm
- Gas: R134a 90%, SF₆ 10%
- Applied voltage: 3 kV (176 kV/cm)
- Sensitive area: 36 mm×36 mm

Time resolution of GasPM

5/15

Demonstrated the high time resolution of GasPM!

Time resolution

 $\sigma = 36.0 \pm 0.9$ ps at the main peak. Laser width: 21.8 ± 0.5 ps (Measured by a streak camera) Read out time resolution: 14.0 ± 0.3 ps

→25.0 ± 1.1ps w/o laser width and read-out resolution Better than MCP-PMT ($\sigma = 30 \text{ ps}$ (Channel diameter =10 µm))

Delayed timing signals

Charge and timing distributions

Delayed signal

- Larger signal charge than the main signal
- Slower rising edge on average
- Observed 2-3 overlapping peaks for each pulse in some events

Waveform

Signal Yields

	Yield	Ratio of the signal component
Main	3224 ± 64	1
delayed	752 ± 48	0.23 ± 0.02
Further-delayed	394 ± 47	0.12 ± 0.01

PD24, Development of a picosecond-timing Cherenkov detector using gaseous photomultiplication (Ryogo Okubo)

NIMA, Volume 1053,2023,168378

Photon feedback

Secondary avalanche from UV light due to the gas excitation and deexcitation.

Photon feedback occurrence under the assumption of a Poisson model using the ratio of the signal component: 0.30 ± 0.02 .

PD24, Development of a picosecond-timing Cherenkov detector using gaseous photomultiplication (Ryogo Okubo)

NIMA, Volume 1053,2023,168378

0V

Application of GasPM as a Cherenkov timing detector

Detect Cherenkov light with CsI photocathode

Design of the prototype

2 mm MgF₂ window

CsI photocathode: High gas resistance, Sensitive to UV light

 \rightarrow Suitable for Cherenkov light detection.

Expected performance

7 photons/ track (with 2 mm MgF₂, QE(CsI)=20% at 160 nm)

Detection efficiency : 100%

Time resolution : $\sigma = \frac{25}{\sqrt{N}}$ ps (9 ps w/ 7 photons)

8 / 15

Possible application of GasPM:

A picosecond timing TOF and γ timing measurements

GasPM can measure the timing of charged particles and low-energy γ with a picosecond resolution.

Possible application at Belle II

Belle II experiment

- High-luminosity e^+e^- collider at c.m. energy of 10.58 GeV.
- Located KEK, Japan
- Aim indirect BSM searches via precise measurement of B, D, τ

Put GasPM here

- **ARICH** (Forward endcap PID)
- **Electromagnetic calorimeter**

PID by TOF with high-resolution

- Improve $K \pi$ identification by measuring **TOF** with σ =20 ps with 100% efficiency.
 - \rightarrow K ID eff. 99.7% and π -misID 0.4% (2 GeV)

γ timing measurement with high-resolution

- Detect γ timing with $\sigma = 20$ ps and 90% efficiency
- Identify fake γ from beam background
- Reduce fake calorimeter clusters to 10%

Beam test

Target

- Demonstrate the Cherenkov timing detection using GasPM
- Time resolution measurement of GasPM (We expect <u>σ = 50 - 70 ps</u> with this configuration.)

Location

PF-AR test beam line at KEK (Japan)

Setup

- GasPM with a Cherenkov radiator (Gap voltage = $2.8 \text{ kV}/200 \mu \text{m}$ (lower than before just to be safe because we observed noises with an extremely large pulse height)
- MCP-PMT for beam timing measurement ($\sigma = 30 \text{ ps}$)
- Waveform read-out by DRS4 digitizer (5GSPS, $\sigma = 8.4 \text{ ps}$)

PD24, Development of a picosecond-timing Cherenkov detector using gaseous photomultiplication (Ryogo Okubo)

The first Cherenkov light detection with GasPM

Signal timing extraction

^{'×} ×× ×*

8 80 Time [ns] 82

84

-0.4

0.0

-0.1

74

76

78

Slope [V/ns]

Challenges

- Pulse overlap due to photon feedback
- The probability of the photon feedback increased because of the improved quantum efficiency
 - \rightarrow Developed a fitting with the

first pulse detection.

Fit procedure

- 1.Fit waveform with a polynomial
- 2.Measure the slope of the fitted curve
- 3.Extract the timing at the maximum slope

Read-out

Time resolution

- 73.0 ± 2.4 ps (all), 62.3 ± 4.8 ps (Large pulse height)
- Expected time resolution by the simulation: 22 33 ps
 - \rightarrow Data/Simulation ratio =1.9 2.3

which is consistent with the first test with the laser

- (Data/Simulation ratio = 1.2 2.1)
- → Achieved the expected time resolution

with a Cherenkov light detection using GasPM.

Time resolution (all)

Future development plan

How to achieve the 10 ps resolution as designed?

- Increase the read-out sampling rate from 5GSPS to 10GSPS for better separation for the photon feedback signals.
- Increase the gap voltage from 2.8 kV to 3.5 kV
 - \rightarrow Factor 2 improvement in the single photon resolution
- Increase the number of the detected photons with a thicker radiator and the new CsI photocathode

 \rightarrow If the detected photons/event will be about 1 to 10, time resolution will be improved by factor 3.

→ We can improve the time resolution from 62.4 to about 10 ps with this assumption.

Summary

Gaseous photomultiplier is a photodetector that has three advantages, high time resolution, large-area, and low cost.

Single photon response of GasPM

- Demonstrated that GasPM has an excellent single photon time resolution of 25.0 ± 1.1 ps.
- Some of the signals have a delayed timing and a large charge due to photon feedback.

Application of the GasPM as a charged particle detector

- Performed beam test at PF-AR test beamline at KEK, Japan
- Time resolution 73.0 \pm 2.4 ps (all), 62.4 \pm 4.8 ps (Large pulse height) which agrees to the expectation

Next

• Plan to increase the gap voltage and increase the number of the detected photons. \rightarrow Aim to reach $\sigma \simeq 10$ ps resolution!

K. Matsuoka, R. Okubo, Y. Adachi,

Nucl. Instrum. Methods Phys. Res. A, Volume 1053,2023,168378

Time resolution of the MCP-PMT

 $\sigma = 23.9 \pm 1.2$ ps for two MCP-PMTs.

Read-out resolution: $\sigma = 8.4 \text{ ps}$

 \rightarrow Time resolution of each MCP-PMT: $\sigma = 15.8 \pm 1.1 \text{ ps}$

Time resolution measurement

Set up

Laser

Picosecond pulse laser with short wavelength and large intensity that is suitable for this measurement

- Wavelength: 375 nm
- Average Power: 1 mW
- Pulse width: 21.8 ±0.5 ps

• Repetition rate : 100 MHz

Laser signal detection rate: 0.02 Hz \rightarrow Single photon Random noise rate : 0.3 – 1 Hz

DRS4 evaluation board

Wave form readout with

- a good time resolution.
- Sampling rate: 5 G samples / sec
- Analog bandwidth: 700 MHz
- Measured time resolution in this setup: 14.0 \pm 0.3 ps

GasPM waveform

Typical waveform (amplified by 27dB)

Response to single photons

Gain	3.3×10^{6}
Rise time	1 ns

Signal timing determination by fitting

Determine the signal timing as the time when the rising edge reaches half of the maximum voltage

19 /15