

Latest MPPC development from Hamamatsu

Ardavan Ghassemi

Hamamatsu Photonics USA

Nov. 19. 2024

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

Table of contents

Development of VIS(Blue)-MPPC

Development of VUV-MPPC

Development of VIS(Blue)-MPPC

© Hamamatsu Photonics K.K. and its affiliates. All Rights Reserved.

S14160 / S14161 series

Next generation MPPC

- ✓ Higher PDE
- ✓ Lower dark noise

The structure of the latest developed MPPC

Samples used in this report

S14160-4050HS(Ref) : HWB-MPPC, Sensitive area 4mm sq., Pixel pitch 50μmDeveloped MPPC : HWB-MPPC, Sensitive area 3.7mm sq., Pixel pitch 50μm

Characteristics of the developed MPPC (Ta = 25degC) Gain

Cd+Cq of a micropixel

S14160-4050HS : 142.2fF Developed MPPC : 97.6fF

<u>dM / dV</u>

S14160-4050HS : 8.9 x10⁵ Developed MPPC : 6.1 x10⁵

Vbreakdown

S14160-4050HS : 38.4V Developed MPPC : 51.3V

Dark current

Vover [V]

Dark count and Cross talk

PDE at λ = 404nm , PDE wavelength

CTR of the developed MPPC (Ta = 25degC)

CTR measurement setup

CTR

PDE, DCR and Timing charactaristics

(1a = 200cg0; 11 = 1)				
Sample type	S14160 -4050HS	Latest developed MPPC		
Vover [V]	6	6	12	
Cd+Cq [fF]	142.2	97.6		
dM / dV	8.9 x10 ⁵	6.1 x10 ⁵		
Vbreakdown [V]	38.4	51.3		
Gain	5.3 x10 ⁶	3.7 x10 ⁶	7.3 x10 ⁶	
Dark current [nA/mm sq.]	467	61	246	
Dark count [kcps/mm sq.]	147	39	77	
Prompt cross talk [%]	14.8	13.5	30.2	
PDE at 404nm [%]	53	61.5	65.3	
CTR FWHM w/ LYSO	128	116	107	
3.14x3.14x20mm [ps]			107	

1 $-200000, 11 - 1$	egC, n = 1	Ta = 25c	(
---------------------	------------	----------	---

- We successfully developed MPPC with lower dark noise and higher PDE.
- This new MPPC achieved nearly 100ps CTR with the high-speed scintillator.

Development of VUV-MPPC (VUV5)

Strategies for characteristic improvement

➤1st step: DCR suppression

>2nd step: PDE improvement

- Initially, a structure is developed to reduce the DCR.
 Significant structure changes are required for DCR suppression.
- The next step is optimization to improve sensitivity.

Target of Dark Count Rate (DCR): below 0.01 cps/mm² at LXe temp. (comparable to Photomultiplier Tube's DCR)

• DCR is related to the electrical field in the avalanche layer, especially at lower temperature.

= The lower electrical field, the lower DCR.

- DCR of VUV5 (1st prototype) is reduced to 1/10 from VUV4 LXe temperature.(About 0.05cps/mm²)
- The 2nd prototyping is on going for more improvement.

- It is expected to improve characteristics using the same method as VIS-MPPC.
- Target of PDE(75um cell size, Typ. value):
 λ = 125 nm : 30 % (ref. VUV4: 25 %)
 λ = 175 nm : 35 % (ref. VUV4: 30 %)
- TSV(Through Silicon Via) structure can improve the geometrical fill-factor. (VUV-MPPC with TSV technology has been developed.)

- MPPC for Dark matter search and neutrino(0vββ) experiments need limited radioisotope content of material mass.
- We are developing Chip on Film(CoF) MPPCs that are lightweight and can be made by low radioisotope materials(mainly polyimide).
- Suitable for mass production because of using print circuit technology.

Low-RI MPPC array

Customized VUV-MPPC array for the AXEL group

- AXEL : Neutrinoless double beta decay search with high pressure Xenon gas TPC.
- Customized MPPC chip based on the S13370 series (cell pitch 50µm, TSV type, 64 ch.)
- Low RI materials used in the package of this MPPC array (FPC substrate: Polyimide, Stiffener: PEEK)
- RI-level is not measured.
- FPC material and process do not care about the RI. We need to optimize the material and process.
- A reference work on FPC RI:

Arnquist, I.J. et al., EPJ Techn Instrum 10, 17 (2023).

- Next generation MPPCs are under development. (VIS and VUV).
- For VIS-MPPC, significant improvements of the PDE, DCR and timing characteristics are achieved. Reproducibility and reliability verification is ongoing.
- For VUV-MPPC, prototyping is ongoing for more DCR suppression, and ways to improve PDE are being investigated. Development of low-RI package is ongoing.

> <u>Hamamatsu continues MPPC's enhancement for physics experiments!</u>

www.hamamatsu.com