

FCCee Optics Design Meeting

FCCee: Luminosity tuning and optimization

With inputs from F. Zimmermann, J.P. Salvesen, J. Keintzel, C. Carli

Vaibhavi Gawas CERN and University of Geneva

- Introduction
- Luminosity measurement
- Beamstrahlung signals
- Beam tolerances
- GUINEA-PIG
- Preliminary results

Work Plan: Luminosity optimization and tuning

- Luminometer signal:
- Single Bremsstrahlung based fast luminosity monitors?
- <u>Beamstrahlung monitor signals</u>: Dependence on IP position, closed-orbit angle, beam sizes
 - If possible- information from <u>silicon vertex detector signals</u>

Combine this information for luminosity tuning
 and optimization

SuperKEKB- Large Angle Beamstrahlung Monitor, neural network based techniques: measuring 32 independent values with different optical properties (32 Photomultipliers) Machine-Learning based recipe to calculate beam-parameters and tune knobs??

Supervised learning based model for <u>magnetic error</u> <u>correction at LHC</u>

LEP	 16 small tungsten-silicon calorimeters Rate of small angle Bhabha scattering events Luminosity and beam angular divergence: fast monitor based on the single bremsstrahlung process
SuperKEKB	 Detecting photons from radiative Bhabha scattering Specific luminosity from ZDLM luminosity monitor Instant total luminosity by ECL monitor
SLC	• Small angle monitor (SAM) for measuring Bhabha scattering (with Mark-II detector)
LHC	Van Der Meer method (using vertical beam steering)

Luminosity	Z	W	ZH	tt
$10^{34} \text{cm}^{-2} \text{s}^{-1}$	140	20	5.0	1.4

Beamstrahlung signals

- <u>Transverse sizes of e+ and e- beam:</u> Analysis of beamstrahlung energy patterns
- IP beam-beam steering: Angular shift in in centre of beamstrahlung distribution (in gamma region)
- <u>Luminosity, beam size variation:</u> <u>SLC</u> Visible(light) beamstrahlung at fixed angle
- <u>Moments of beam distribution:</u>
 <u>CESR studies</u>
 From polarization data of beamstrahlung

- <u>Passive monitoring of position and size of beam:</u> Beamstrahlung polarization and spectra <u>EIC studies</u>
- <u>Beam length and collision timing:</u> Beamstrahlung time profile <u>SuperKEKE</u>
- <u>Relative height of beams, relative vertical offsets:</u> Polarization observables (ratios)

SuperKEKB

 Information about IP geometry: Angular scans

Tolerances

IP Spot size related tolerances (aberrations that increase the IP spot size)

Vertical waist shift

- Horizontally displaced sextupole
- Displaced upstream quadrupoles

 $\mathbf{y}^{*} \rightarrow \mathbf{y}^{*} + \mathbf{L} \mathbf{y}^{'*}$

Vertical dispersion

- Displaced quadrupole or change in its strength
- Rolls of bending magnets or quadrupoles
- Vertical displacement of sextupoles

$${
m y}^*
ightarrow {
m y}^* + {
m D}_y \delta_i$$

Skew coupling

- Rolls of quadrupole magnets
- Vertical displacement of sextupoles
- Trajectory offset causing vertical orbit offset in sextupoles

$$egin{array}{rl} {\mathsf y}^* o {\mathsf y}^* + {\mathsf a}{\mathsf x}^* \ {\mathsf y}^* o {\mathsf y}^* + {\mathsf b}{\mathsf x}^{'*} \end{array}$$

<u>Waist shift</u>

Tolerances

Vertical dispersion

 $y^*
ightarrow y^* + D_y \delta_i$

x [mm]

Skew coupling

 $\mathsf{y}^* \to \mathsf{y}^* + \mathsf{a}\mathsf{x}^*$

Generator of Unwanted Interactions for Numerical Experiment Analysis: Program Interfaced to GEANT

- Implements full beam dynamics for particle generation, Beamstrahlung, interaction effects on luminosity and background, generates radiative Bhabhas
- Both classical and quantum description of beamstrahlung can be used

- Simulation code also includes pinch effect, pair creation, hadronic background calculations
- Accepts input files of electron and positron beams with crab-waist transform

Preliminary results

Beamstrahlung flux at four working points of FCCee

45.6 GeV, 80.0 GeV, 120.0 GeV, 182.5 GeV

Energy distribution

 $y^* \rightarrow y^* + Ly'^*$

Angular distribution

Waist shifts in electron beam

FCCee-Z

FCCee-t

Luminosity Measurements

Waist shifts in electron beam

Luminosity Measurements

Waist shifts in both beam

 $y^*
ightarrow y^* + D_y \delta_i$

Energy distribution

Vertical dispersion in electron beam

FCCee-t

Energy distribution

Vertical dispersion in electron beam

FCCee-Z

FCCee-t

Luminosity Measurements

Vertical dispersion in electron beam

Luminosity Measurements

Vertical dispersion in both beams

18

1000

- Luminometer and tuning knobs: Implied alignment
 or Beam stability tolerance
- Beamstrahlung monitor signals: Dependence
- on IP position, closed-orbit angle, beam sizes
 - If possible: information from silicon vertex detector signals

The overall recipe for luminosity tuning

Combine this information for Luminosity tuning and optimization

Starting with Beamstrahlung signals

Simulations

- Guinea Pig: Generate effects of skew-coupling, other offsets on BS spectrum, power output, and luminosity
- Additional beam-generation code to set-up switches that are unavailable in GP.

Further Goals

- Effects of multiple tolerances applied together
- BBBREM for radiative Bhabhas
- BHLUMI/other MCs? for Bhabha electrons
- Combining signals in a ML framework

Thank you all!

Acknowledgements

Frank Zimmermann, Jack Salvesen, Jacqueline Keintzel, Christian Carli, Kevin Andre, Manuela Boscolo

References

- Study of Electromagnetic and Hadronic Background in the Interaction Region of the TESLA Collider <u>https://cds.cern.ch/record/331845?In=en</u>
- Characterization of the beamstrahlung radiation at the future high-energy circular collider <u>https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.111002</u>
- Beam Spot Size Measurement Using Beamstrahlung Signals at the SLC Interaction Point
 <u>https://accelconf.web.cern.ch/p91/PDF/PAC1991_1207.PDF</u>
- Beam-beam deflection as a beam tuning tool at the SLAC linear collider <u>https://www.sciencedirect.com/science/article/pii/0168900290902031</u>
- Real-time luminosity monitor for a B-factory experiment <u>https://www.sciencedirect.com/science/article/pii/S016890020000766X?via%3Dihub</u>
- Beamstrahlung Monitor for SLC Final Focus Using Gamma Ray Energies https://inspirehep.net/literature/230105
- Beamstrahlung Monitor for SLC Final Focus Using Visible Wavelengths https://inspirehep.net/literature/230103
- Luminosity optimization feedback in the SLC <u>https://inspirehep.net/literature/496269</u>
- Luminosity Measurements And Calculations <u>Https://Cds.Cern.Ch/Record/261063/</u>
- Beam-Beam Simulations With Guinea-Pig http://cds.cern.ch/record/2828391?ln=en
- Lep Luminosity Revisited: Design And Reality https://accelconf.web.cern.ch/a01/PDF/WEAU01.pdf
- Beam Blow Up due to Beamstrahlung in Circular \$e^+e^-\$ Colliders <u>https://cds.cern.ch/record/261063/files</u>
- Challenges for FCC-ee Luminosity Monitor Design https://arxiv.org/abs/2107.12837
- Lecture Notes for: Accelerator Physics and Technologies for Linear Colliders https://hep.uchicago.edu/~kwangje/LectureNotes_Zimmermann.pdf

BACKUP SLIDES

Synchrotron radiation emitted by a beam in the electromagnetic field of the incoming beam near IP

Classical Description of Beamstrahlung

Beamstrahlung parameter: $\Upsilon = \frac{2}{3} \frac{\hbar \omega_c}{E_o}$ $\hbar \omega_c = \frac{3}{2} \frac{\hbar c \gamma^3}{\rho}$ For FCCee, $\Upsilon << 1$: Classical regime

$$\langle \Upsilon \rangle = \frac{5}{6} \frac{r_e^2 \gamma N_e}{\alpha \sigma_z (\sigma_x^* + \sigma_y^*)}$$

- QM nature of Beamstrahlung- increases energy spread- in turn increases bunch length.
- Reduces luminosity. Reduction of dynamic aperture- increased loss rate of particles
- Photon number and emitted energy proportional to beamstrahlung parameter

Waist Shifts (in electron beam)

Waist Shifts (in electron beam) FCCee_Z

Waist Shifts (in electron beam) FCCee_t

29

Vertical Dispersion (in electron beam)

CERN

Vertical dispersion (in electron beam) FCCee Z

Vertical Dispersion (in electron beam) FCCee_t

Waist shift (in both beams)

Waist-shift (both beams) FCCee_Z

Waist-shift (both beams) FCCee_Z

Waist-shift (both beams) FCCee_t

36

Vertical Dispersion (in both beams)

Vertical Dispersion (both beams) FCCee_Z

FCCee_t

Vertical-dispersion (both beams)

FCCee_Z

Skew Coupling

FCCee_t

Parameters

О	FUTURE CIRCULAR COLLIDER

FCC-ee	collider	parameters	as of	July	30	2023
100-00	comut	Darameters	00 01	JULY	· · · · ·	4040.

Beam energy	[GeV]	45.6	80	120	182.5	
Layout		PA31-3.0				
# of IPs		4				
Circumference [km]		90.658816				
Bend. radius of arc dipole [km]		10.021				
Energy loss / turn	[GeV]	0.0391	0.374	1.88	10.29	
SR power / beam	SR power / beam [MW]		50			
Beam current	[mA]	1279	137	26.7	4.9	
Colliding bunches / beam		11200	1780	380	56	
Colliding bunch population	$[10^{11}]$	2.14	1.45	1.32	1.64	
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.67	1.57	
Ver. emittance at collision ε_y	[pm]	1.9	2.2	1.0	1.6	
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.85	1.25	0.65	1.1	
Arc cell		Long 90/90 90/90			/90	
Momentum compaction α_p [10 ⁻⁶]		28	3.6	7.4		
Arc sext families		75		146		
$\beta^*_{x/y}$	[mm]	110 / 0.7	220 / 1	240 / 1	800 / 1.5	
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.360	398.148 / 398.216	
Chromaticities $Q'_{x/y}$		0 / +5	0/+2	0 / 0	0 / 0	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.109	0.070 / 0.109	$0.103 \ / \ 0.152$	0.159 / 0.201	
Bunch length (SR/BS) σ_z	[mm]	5.60 / 15.5	3.46 / 5.09	3.40 / 5.09	1.85 / 2.33	
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38	
Harm. number for 400 MHz	121200					
RF frequency (400 MHz)	400.786684					
Synchrotron tune Q_s		0.0288	0.081	0.032	0.089	
Long. damping time	[turns]	1158	219	64	18.3	
RF acceptance	[%]	1.05	1.15	1.8	3.1	
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5	
Beam crossing angle at IP	± 15					
Crab waist ratio	[%]	70	55	50	40	
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.097	0.013 / 0.128	0.010 / 0.088	0.066 / 0.144	
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		26.4	3.7	5.4	0.99	
Lifetime (q + BS + lattice) [sec]		10000	4000	3500	3000	
Lifetime $(lum)^b$	[sec]	1330	970	660	650	
Luminosity / IP	$[10^{34}/cm^2s]$	141	20	6.3	1.38	
Luminosity / IP (CDR)	$[10^{34}/{\rm cm^2 s}]$	230	28	8.5	1.8	

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section

• Small beams, strong sextupoles to cancel chromaticity and aberrations

