Summary from KIT - top EWK coupling and Vts April 17, 2024

Lars Bogner, Sofia Giappichini, Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo

Outline

- EWK coupling measurement
- IVtsl measurement

Top EWK couplings

(The following work is a bachelor thesis of Simon Keilbach)

xunwu.zuo@cern.ch

Top EWK couplings parameters

- Direct measurement of ttZ and tt γ couplings
 - Some BSM models can lead to significant deviations from SM
 - Traditionally more discussed in polarized e+e- collisions. For example at ILC (<u>arXiv 1306.6352</u>)
 - Study from FCC (10.1007/JHEP04(2015)182) also expects sensitivity without beam polarization.

xunwu.zuo@cern.ch

4

examples of BSM contributions

Modified couplings

10.1007/JHEP04(2015)182

• coupling constants expressed in form factors

$$\Gamma_{\mu}^{ttX} = -ie \left\{ \gamma_{\mu} \left(F_{1V}^{X} + \gamma_{5} F_{1A}^{X} \right) + \frac{\sigma_{\mu\nu}}{2m_{t}} (p_{t} + p_{\bar{t}})^{\nu} \left(iF_{2V}^{X} + \gamma_{5} F_{2A}^{X} \right) \right\},\$$

optimal observable parametrization

 $A_v + \delta A_v = -2i \sin \theta_W \left(F_{1V}^X + F_{2V}^X \right) , \qquad B_v$ $\delta C_v = -2i \sin \theta_W F_{2V}^X ,$

$$B_v + \delta B_v = -2i \sin \theta_W F_{1A}^X,$$

 $\delta D_v = -2 \sin \theta_W F_{2A}^X.$

• 8 independent modifications

xunwu.zuo@cern.ch

Whizard setup (F. Bach thesis)		
 Lagrangians 		
$\mathcal{L}_{ttZ} = - rac{g}{2c_w} ar{t} \gamma^\mu ig(X_{tt}^L P_L + X_{tt}^R P_R - 2s_w^2 Q_t ig) t Z_\mu$		
$-rac{g}{2c_w}ar{t}rac{\mathrm{i}\sigma^{\mu u}q_ u}{m_Z}ig(d_V^Z+\mathrm{i}d_A^Z\gamma_5$	$)t Z_{\mu}$,	
$\Delta \mathcal{L}_{tt\gamma} = -\mathrm{e}Q_t \bar{t}\gamma^\mu t A_\mu - \mathrm{e}\bar{t}\frac{\mathrm{i}\sigma^{\mu\nu}q_\nu}{m_t} ($	$\left(d_V^\gamma + \mathrm{i} d_A^\gamma \gamma_5 ight) t A_\mu$	
 Parameterization in Whizard SM_top_anom model 		
$X_{tt}^L = \texttt{vl_ttZ}$	$X^R_{tt} = \texttt{vr_ttZ}$	
$d_V^Z = { t v_t Z}$	$d^Z_A = \texttt{ta_ttZ}$	
$d_V^\gamma = \texttt{tv_ttA}$	$d_A^\gamma = \texttt{ta_ttA}$	
 Independent modifications 		
 6 parameters related to ttZ and ttγ couplings, 3 are constrained by gauge invariance 		
 tv_ttZ fixed by tv_ttA, ta_ttZ f vl_ttZ fixed by vl_tbW 	ixed by ta_ttA,	
 In this work, use 3 independent modifications: tv_ttA, ta_ttA, vr_ttZ 		

Event selection

- Selection for semileptonic decay:
 - $n_{\mu,e} > 0$ for leptons with $\Delta R(\ell, J) > 0.4$ or $E_{\ell}/E_J > 0.5$
 - missing energy E > 23 GeV
 - lepton momentum $p_{\text{lead}} > 13 \text{ GeV}$

• PV compatibility $d_0 < 0.05 \text{ mm}, \frac{d_0}{\sigma(d_0)} < 50$

xunwu.zuo@cern.ch

Jet definition at the moment: kt, njet = 6, $E_I > 10 \text{ GeV}$

ta_ttA variation

xunwu.zuo@cern.ch

xunwu.zuo@cern.ch

vr_ttZ variation

xunwu.zuo@cern.ch

Signal sensitivity

- Signal uncertainty extracted from binned chi² fit, assuming SM Asimov toy data
 - ta_ttA = $0.00^{+1.46 \times 10^{-2}}_{-1.40 \times 10^{-2}}$

•
$$tv_ttA = 0.00^{+4.20 \times 10^{-4}}$$

$$-3.92 \times 10^{-4}$$

- vr_ttZ = $0.00^{+3.86 \times 10^{-3}}_{-2.89 \times 10^{-3}}$
- JHEP04(2015)182), except for one parameter

$$\begin{array}{c|c} & \mbox{WHIZARD fr} \\ \hline F_{2V}^{\gamma} & -8.40 \times 10^{-4} \\ F_{2A}^{\gamma} & 2.91 \times 10^{-2} \end{array} - \end{array}$$

Due to different parametrization, precisions not directly comparable to the ones in (10.1007/

amework	framework of [39]	
$+7.85 \times 10^{-4}$	$\pm 8.1 \times 10^{-4}$	
$2.81 imes 10^{-2}$		

Discussions

- Performed data analysis with somewhat realistic experimental configuration
- Confirmed the sensitivity of FCC-ee to ttZ and tt γ coupling parameters
- In ballpark agreement with theory expectation in (<u>10.1007/JHEP04(2015)182</u>), albeit different parametrization
- Would be happy to hear suggestions from the theory community on the choice of parameter basis and how to compare them.

Probe of Vts

xunwu.zuo@cern.ch

Context

- $t \rightarrow Ws$ decay as clean(est) probe of IVtsI
 - From PDG, $|V_{ts}| = (41.5 \pm 0.9) \times 10^{-3}$, measured from B_s mixing, dominated by theory uncertainty
 - t → Ws at FCC-ee is not going to have competitive precision, but it is free from theory inputs.
- Some basic numbers
 - $1.9 \times 10^6 \times 2 \times |V_{ts}|^2 \sim 6400$ cases of $t \to Ws$
 - Assuming good s-tagging efficiency and correct reconstruction of W, still need b rejection below 0.1%

s-tagging performance

- Training from <u>arxiv 2202.03285</u>
 - trained with $ZH \rightarrow \nu \nu j j$ events, with inclusive jets, R = 1.5
- Applied to $tt \rightarrow WWsb$ events, with different jet definitions
 - Exclusive (kt), njet = 2, 4, 6
 - Inclusive (anti-kt), R = 0.5, 1.0, 1.5

Very preliminary look, needs to be refined

arxiv 2202.03285

dileptonic events

- Compare exclusive clustering algo with different numbers of jets
- s-tagging performance is better if the jet reconstruction is more appropriate
- But not matching the performance from the training

correct jet assignment

xunwu.zuo@cern.ch

semileptonic events

- Comparing inclusive clustering algo with different jet radii
- Performance with inclusive jets is in general better than those with exclusive jets
- Performance seems to be better with small R jets
 - Large jets may have multiple heavy-flavor constituents

xunwu.zuo@cern.ch

Discussion

- No clear conclusion for the moment
- Further study on jet definition and flavor tagging performance for ttbar events
 - Synergy with other studies (involving ttbar reconstruction)

gging performance for ttbar events ar reconstruction)

xunwu.zuo@cern.ch

KIT group

- Group leader: Markus Klute
- Postdoc researchers: Jan Kieseler, Matteo Presilla, Xunwu Zuo
- PhD student: Sofia Giappichini
- Bachelor student: Lars Bogner, Simon Keilbach

Samples

All samples in winter2023 campaign, Whizard ME + Pythia6 shower + Delphes IDEA simulation

SM t -> Wb samples

- wzp6_ee_SM_tt_tlepTlep_noCKMmix_keepPolInfo_ecm365
- wzp6_ee_SM_tt_thadThad_noCKMmix_keepPolInfo_ecm365
- wzp6_ee_SM_tt_tlepThad_noCKMmix_keepPolInfo_ecm365
- wzp6_ee_SM_tt_thadTlep_noCKMmix_keepPolInfo_ecm365

t -> Wb samples with **BSM EWK** couplings

- wzp6_ee_SM_tt_tlepTlep_noCKMmix_keepPolInfo_{variation}_ecm365
- wzp6_ee_SM_tt_thadThad_noCKMmix_keepPolInfo_{variation}_ecm365
- wzp6_ee_SM_tt_tlepThad_noCKMmix_keepPolInfo_{variation}_ecm365
- wzp6_ee_SM_tt_thadTlep_noCKMmix_keepPolInfo_{variation}_ecm365

SM samples with t -> Ws decay

- wzp6_ee_SM_tt_tWsTWb_tlepTall_ecm365
- wzp6_ee_SM_tt_tWsTWb_tlightTall_ecm365
- wzp6_ee_SM_tt_tWsTWb_theavyTall_ecm365
- wzp6_ee_SM_tt_tWbTWs_tallTlep_ecm365
- wzp6_ee_SM_tt_tWbTWs_tallTlight_ecm365
- wzp6_ee_SM_tt_tWbTWs_tallTheavy_ecm365

xunwu.zuo@cern.ch

$\{variation\} =$

prompt vs nonprompt leptons

xunwu.zuo@cern.ch

Signal efficiency and purity

•
$$\epsilon = \frac{S}{S_{\text{tot}}}$$
 (efficiency)
• $\pi = \frac{S}{S+B}$ (purity)

semilepton $\epsilon\,[\%]$ $n_{
m leptons} > 0$ 97.486 ± 0.017 69 $\not E > 23 \, {\rm GeV}$ 95.686 ± 0.022 92. $p_{\rm lead} > 13 \,{\rm GeV}$ 94.035 ± 0.026 97PV selection 47.083 ± 0.055 98

xunwu.zuo@cern.ch

nic	full hadronic	
π [%]	$\epsilon[\%]$	π [%]
$.212\pm0.027$	42.029 ± 0.053	30.789 ± 0.004
$.602\pm0.026$	7.409 ± 0.028	7.398 ± 0.002
$.139 \pm 0.018$	2.684 ± 0.017	2.861 ± 0.001
$.886 \pm 0.017$	0.514 ± 0.008	1.114 ± 0.001

dihadronic events

- Compare exclusive clustering algo with different numbers of jets
- s-tagging performance is better if the jet reconstruction is more appropriate
 - s vs u,d,c is better for nets = 6, while s vs b is only better in high efficiency part
- But not matching the performance from the training

xunwu.zuo@cern.ch

correct jet assignment

semileptonic events

- Compare exclusive clustering algo with different numbers of jets
- s-tagging performance is better if the jet reconstruction is more appropriate
- But not matching the performance from the training

xunwu.zuo@cern.ch

